Yu Sanghyeon, Kim Junghyun, Kim Man S
Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea.
Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea.
Genes (Basel). 2025 Aug 1;16(8):928. doi: 10.3390/genes16080928.
: Myelodysplastic syndrome (MDS) is a heterogeneous clonal hematopoietic disorder characterized by ineffective hematopoiesis and leukemic transformation risk. Current therapies show limited efficacy, with ~50% of patients failing hypomethylating agents. This review aims to synthesize recent discoveries through an integrated network model and examine translation into precision therapeutic approaches. : We reviewed breakthrough discoveries from the past three years, analyzing single-cell multi-omics technologies, epitranscriptomics, stem cell architecture analysis, and precision medicine approaches. We examined cell-type-specific splicing aberrations, distinct stem cell architectures, epitranscriptomic modifications, and microenvironmental alterations in MDS pathogenesis. : Four interconnected mechanisms drive MDS: genetic alterations (splicing factor mutations), aberrant stem cell architecture (CMP-pattern vs. GMP-pattern), epitranscriptomic dysregulation involving pseudouridine-modified tRNA-derived fragments, and microenvironmental changes. Splicing aberrations show cell-type specificity, with SF3B1 mutations preferentially affecting erythroid lineages. Stem cell architectures predict therapeutic responses, with CMP-pattern MDS achieving superior venetoclax response rates (>70%) versus GMP-pattern MDS (<30%). Epitranscriptomic alterations provide independent prognostic information, while microenvironmental changes mediate treatment resistance. : These advances represent a paradigm shift toward personalized MDS medicine, moving from single-biomarker to comprehensive molecular profiling guiding multi-target strategies. While challenges remain in standardizing molecular profiling and developing clinical decision algorithms, this systems-level understanding provides a foundation for precision oncology implementation and overcoming current therapeutic limitations.
骨髓增生异常综合征(MDS)是一种异质性克隆性造血疾病,其特征为无效造血和白血病转化风险。目前的治疗方法疗效有限,约50%的患者对去甲基化药物治疗无效。本综述旨在通过整合网络模型总结近期的发现,并探讨其向精准治疗方法的转化。:我们回顾了过去三年的突破性发现,分析了单细胞多组学技术、表观转录组学、干细胞结构分析和精准医学方法。我们研究了MDS发病机制中细胞类型特异性的剪接异常、独特的干细胞结构、表观转录组修饰和微环境改变。:四种相互关联的机制驱动MDS:基因改变(剪接因子突变)、异常的干细胞结构(CMP模式与GMP模式)、涉及假尿苷修饰的tRNA衍生片段的表观转录组失调以及微环境变化。剪接异常具有细胞类型特异性,SF3B1突变优先影响红系谱系。干细胞结构可预测治疗反应,CMP模式的MDS对维奈托克的反应率较高(>70%),而GMP模式的MDS反应率较低(<30%)。表观转录组改变提供独立的预后信息,而微环境变化介导治疗耐药性。:这些进展代表了向个性化MDS医学的范式转变,从单一生物标志物转向指导多靶点策略的全面分子谱分析。虽然在标准化分子谱分析和开发临床决策算法方面仍存在挑战,但这种系统层面的理解为精准肿瘤学的实施和克服当前治疗局限性奠定了基础。