Titova Angelina, Bilyalov Airat, Filatov Nikita, Perepechenov Stepan, Kupriyanova Darya, Brovkin Sergei, Shestakov Dmitrii, Bodunova Natalia, Gusev Oleg
Institute of Fundamental Medicine and Biology, Kazan Federal University, 420008 Kazan, Russia.
Federal Center of Brain Research and Neurotechnology of the Federal Medical Biological Agency (FMBA) of Russia, 117513 Moscow, Russia.
Genes (Basel). 2025 Aug 11;16(8):948. doi: 10.3390/genes16080948.
Sarcopenia, the progressive loss of skeletal muscle mass and function with age, significantly contributes to frailty and mortality in older adults. Notably, muscles do not age uniformly-some retain structure and strength well into old age. This review explores the mechanisms underlying differential resistance to muscle aging, with a focus on sarcopenia-resistant muscles. We analyzed current literature across molecular biology, genetics, and physiology to identify key regulators of muscle preservation during aging. Special attention was given to muscle fiber types, mitochondrial function, neuromuscular junctions, and satellite cell activity. Muscles dominated by slow-twitch (type I) fibers-such as the soleus, diaphragm, and extraocular muscles-demonstrate enhanced resistance to sarcopenia. This resilience is linked to sustained oxidative metabolism, high mitochondrial density, robust antioxidant defenses, and preserved regenerative capacity. Key molecular pathways include mTOR, PGC-1α, and SIRT1/6, while genetic variants in , , and contribute to interindividual differences. In contrast, fast-twitch muscles are more vulnerable due to lower oxidative capacity and satellite cell depletion. Unique innervation patterns and neurotrophic support further protect muscles like extraocular muscles from age-related atrophy. Resistance to sarcopenia is driven by a complex interplay of intrinsic and extrinsic factors. Understanding why specific muscles age more slowly provides insights into muscle resilience and suggests novel strategies for targeted prevention and therapy. Expanding research beyond traditionally studied muscles is essential to develop comprehensive interventions to preserve mobility and independence in aging populations.
肌肉减少症是指随着年龄增长骨骼肌质量和功能逐渐丧失,它是导致老年人虚弱和死亡的重要因素。值得注意的是,肌肉衰老并非均匀一致,有些肌肉在老年时仍能保持结构和力量。本综述探讨了肌肉对衰老产生不同抵抗力的潜在机制,重点关注抗肌肉减少症的肌肉。我们分析了分子生物学、遗传学和生理学方面的现有文献,以确定衰老过程中肌肉维持的关键调节因子。特别关注了肌纤维类型、线粒体功能、神经肌肉接头和卫星细胞活性。以慢肌纤维(I型)为主的肌肉,如比目鱼肌、膈肌和眼外肌,对肌肉减少症具有更强的抵抗力。这种恢复力与持续的氧化代谢、高线粒体密度、强大的抗氧化防御能力以及保留的再生能力有关。关键分子途径包括mTOR、PGC-1α和SIRT1/6,而 、 和 的基因变异导致个体差异。相比之下,快肌纤维由于氧化能力较低和卫星细胞耗竭而更易受损。独特的神经支配模式和神经营养支持进一步保护眼外肌等肌肉免受与年龄相关的萎缩。对肌肉减少症的抵抗力是由内在和外在因素的复杂相互作用驱动的。了解特定肌肉衰老较慢的原因有助于深入了解肌肉的恢复力,并为针对性预防和治疗提供新策略。超越传统研究肌肉的范围进行研究对于制定全面干预措施以维持老年人群的活动能力和独立性至关重要。