Suppr超能文献

基于机器学习的二维图像三维沥青混合料重建随机建模方法

Machine-Learning-Driven Stochastic Modeling Method for 3D Asphalt Mixture Reconstruction from 2D Images.

作者信息

Zhang Jiayu, Huang Liang

机构信息

School of Civil Engineering, Zhengzhou University, Zhengzhou 450001, China.

出版信息

Materials (Basel). 2025 Aug 12;18(16):3787. doi: 10.3390/ma18163787.

Abstract

Three-dimensional reconstruction programs are essential tools for understanding the behavior of asphalt mixtures. On the basis of accurate 3D models, it is convenient to identify the complex relationship between spatial structures and physical properties. In this work, we explore a low-cost and data-efficient way to create a collection of 3D asphalt mixture models. The core idea is to introduce a foundational segmentation program and stochastic modeling into the asphalt mixture reconstruction framework. First, our approach captures a 2D image to present spatial structures of the investigated sample. The integration of a smartphone camera and an image quilting method has been designed to understand fine-grained details and facilitate full coverage. Aiming at realizing high-quality segmentation, we propose the Segment Anything Model (SAM)-driven method to distinguish aggregate grains and asphalt binder. Second, Multiple-Point Statistics (MPS) is activated to build 3D models from 2D training images. To speed up the reconstruction step, we apply Nearest Neighbor Simulation (NNSIM) to improve pattern searching efficiency. Aiming at calculating 3D conditional probabilities, the probability aggregation framework is introduced into the asphalt mixture investigation. Third, our program focuses on the modeling evaluation procedure. Determination of a two-point correlation function, analysis of distance and a grain size distribution assessment are separately performed to check the reconstruction quality. The evaluation results indicate that our program not only preserves spatial patterns but also expresses uncertainty during the material production step.

摘要

三维重建程序是理解沥青混合料性能的重要工具。基于精确的三维模型,便于识别空间结构与物理性能之间的复杂关系。在这项工作中,我们探索了一种低成本且数据高效的方法来创建三维沥青混合料模型集。核心思想是将基础分割程序和随机建模引入沥青混合料重建框架。首先,我们的方法捕捉二维图像以呈现所研究样本的空间结构。设计了智能手机摄像头与图像拼接方法的结合,以了解细粒度细节并实现全面覆盖。为了实现高质量分割,我们提出了基于“分割一切模型”(SAM)的方法来区分集料颗粒和沥青结合料。其次,激活多点统计(MPS)从二维训练图像构建三维模型。为了加快重建步骤,我们应用最近邻模拟(NNSIM)来提高模式搜索效率。为了计算三维条件概率,将概率聚合框架引入沥青混合料研究。第三,我们的程序专注于建模评估过程。分别进行两点相关函数的确定、距离分析和粒度分布评估,以检查重建质量。评估结果表明,我们的程序不仅保留了空间模式,还在材料生产步骤中表达了不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe2f/12387270/91f668d73d0a/materials-18-03787-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验