Mohan Kumar Sri Ganesh Kumar, Kinuthia John M, Oti Jonathan, Adeleke Blessing O
Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK.
Materials (Basel). 2025 Aug 14;18(16):3823. doi: 10.3390/ma18163823.
Geopolymers are an environmentally sustainable class of low-calcium alkali-activated materials (AAMs), distinct from high-calcium C-A-S-H gel systems. Synthesized from aluminosilicate-rich precursors such as fly ash, metakaolin, slag, waste glass, and coal gasification fly ash (CGFA), geopolymers offer a significantly lower carbon footprint, valorize industrial by-products, and demonstrate superior durability in aggressive environments compared to Ordinary Portland Cement (OPC). Recent advances in thermodynamic modeling and phase chemistry, particularly in CaO-SiO-AlO systems, are improving precursor selection and mix design optimization, while Artificial Neural Network (ANN) and hybrid ML-thermodynamic approaches show promise for predictive performance assessment. This review critically evaluates geopolymer chemistry and composition, emphasizing precursor reactivity, Si/Al and other molar ratios, activator chemistry, curing regimes, and reaction mechanisms in relation to microstructure and performance. Comparative insights into alkali aluminosilicate (AAS) and aluminosilicate phosphate (ASP) systems, supported by SEM and XRD evidence, are discussed alongside durability challenges, including alkali-silica reaction (ASR) and shrinkage. Emerging applications ranging from advanced pavements and offshore scour protection to slow-release fertilizers and biomedical implants are reviewed within the framework of the United Nations Sustainable Development Goals (SDGs). Identified knowledge gaps include standardization of mix design, LCA-based evaluation of novel precursors, and variability management. Aligning geopolymer technology with circular economy principles, this review consolidates recent progress to guide sustainable construction, waste valorization, and infrastructure resilience.
地质聚合物是一类环境可持续的低钙碱激活材料(AAMs),不同于高钙的C-A-S-H凝胶体系。地质聚合物由富含铝硅酸盐的前驱体合成,如粉煤灰、偏高岭土、矿渣、废玻璃和煤气化粉煤灰(CGFA),与普通硅酸盐水泥(OPC)相比,其碳足迹显著更低,可使工业副产品增值,并且在侵蚀性环境中表现出卓越的耐久性。热力学建模和相化学方面的最新进展,特别是在CaO-SiO₂-Al₂O₃体系中,正在改进前驱体选择和配合比设计优化,而人工神经网络(ANN)和混合机器学习-热力学方法在预测性能评估方面显示出前景。本综述批判性地评估了地质聚合物的化学和组成,强调了前驱体反应性、Si/Al及其他摩尔比、活化剂化学、养护制度以及与微观结构和性能相关的反应机理。结合扫描电子显微镜(SEM)和X射线衍射(XRD)证据,对碱金属铝硅酸盐(AAS)和铝硅酸盐磷酸盐(ASP)体系进行了对比分析,并讨论了耐久性挑战,包括碱-硅反应(ASR)和收缩。在联合国可持续发展目标(SDGs)的框架内,综述了从先进路面和近海冲刷防护到缓释肥料和生物医学植入物等新兴应用。已确定的知识差距包括配合比设计的标准化、基于生命周期评估(LCA)的新型前驱体评估以及变异性管理。本综述将地质聚合物技术与循环经济原则相结合,巩固了近期进展,以指导可持续建设、废物增值和基础设施恢复力。