Siyal Ahmer Ali, Radin Mohamed Radin Maya Saphira, Shamsuddin Rashid, Ridzuan Mohd Baharudin
Micropollutant Research Centre (MPRC), Institute for Integrated Engineering (I2E), Universiti Tun Hussein Onn Malaysia (UTHM) 86400 Parit Raja Batu Pahat Johor Malaysia
HICoE, Centre for Biofuel and Biochemical Research (CBBR), Institute for Sustainable Living, Department of Chemical Engineering, Universiti Teknologi PETRONAS 32610 Bandar Seri Iskandar Perak Darul Ridzuan Malaysia.
RSC Adv. 2024 Jan 2;14(1):446-462. doi: 10.1039/d3ra06205h.
Geopolymers are synthesized by alkali or acid activation of aluminosilicate materials. This paper critically reviews the synthesis kinetics and formation mechanism of geopolymers. A variety of mechanistic tools such as Environmental Scanning Electron Microscopy (ESEM) and Energy Dispersive X-ray diffractometry (EDXRD), Isothermal Conduction Calorimetry (ICC), Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR), H low-field Nuclear Magnetic Resonance (NMR) and Isothermal Conduction Calorimetry (ISC), and others and phenomenological models such as the John-Mehl-Avrami-Kolmogorov (JMAK) model, modified Jandar model, and exponential and Knudson linear dispersion models were used to study the geopolymerization kinetics and many mechanisms were proposed for the synthesis of geopolymers. The mechanistic tools and phenomenological models provided new insights about geopolymerization kinetics and formation mechanisms but each of the techniques used possesses some limitations. These limitations need to be removed and new methods or techniques must be developed to overcome these challenges and get more detailed information about all types of geopolymers. The formation mechanism consists of three to four stages such as dissolution of raw materials, polymerization of silica and alumina, condensation, and reorganization. The Si/Al ratio above the Si/Al ratio of reactants is more suitable and it increases the rate or degree of reaction and produces a higher compressive strength geopolymer. The Na/Al ratio of 1, water-to-solid (W/S) ratio of 0.30-0.45, a temperature in the range of 30 °C to 85 °C, and a curing time of 24 hours are the best for the synthesis of geopolymers. The growing demand for geopolymers in various fields requires the development of new advanced techniques for further understanding of kinetics and mechanisms for tailoring the properties of geopolymers for specific applications.
地质聚合物是通过碱或酸对铝硅酸盐材料的活化作用合成的。本文对地质聚合物的合成动力学和形成机理进行了批判性综述。使用了多种机理分析工具,如环境扫描电子显微镜(ESEM)、能量色散X射线衍射仪(EDXRD)、等温传导量热法(ICC)、衰减全反射傅里叶变换红外光谱法(ATR-FTIR)、低场核磁共振(NMR)和等温传导量热法(ISC)等,以及现象学模型,如约翰-梅尔-阿夫拉米-科尔莫戈罗夫(JMAK)模型、修正的詹达尔模型、指数模型和克努森线性扩散模型,来研究地质聚合动力学,并提出了许多地质聚合物合成的机理。这些机理分析工具和现象学模型为地质聚合动力学和形成机理提供了新的见解,但所使用的每种技术都有一些局限性。需要消除这些局限性,必须开发新的方法或技术来克服这些挑战,并获得有关所有类型地质聚合物的更详细信息。形成机理包括三到四个阶段,如原料溶解、硅和铝的聚合、缩合和重组。高于反应物Si/Al比的Si/Al比更合适,它会提高反应速率或程度,并产生具有更高抗压强度的地质聚合物。Na/Al比为1、水固比(W/S)为0.30 - 0.45、温度在30℃至85℃范围内以及养护时间为24小时是合成地质聚合物的最佳条件。各领域对地质聚合物不断增长的需求要求开发新的先进技术,以进一步了解动力学和机理,从而为特定应用定制地质聚合物的性能。