Suppr超能文献

废金属和烧粘土填料对用于储能应用的地质聚合物复合材料热性能和力学性能的影响。

Effect of Waste Metal and Chamotte Fillers on the Thermal and Mechanical Properties of Geopolymer Composites for Energy Storage Applications.

作者信息

Soukup Aleš, Vakili Mohammadtaghi, Hájková Pavlína

机构信息

Department of Material Science, Faculty of Mechanical Engineering, Technical University of Liberec, Studentská 1402/2, 461 17 Liberec, Czech Republic.

ORLEN UNIPETROL RPA s.r.o., Záluží 1, 436 70 Litvínov, Czech Republic.

出版信息

Materials (Basel). 2025 Aug 17;18(16):3853. doi: 10.3390/ma18163853.

Abstract

This study investigates the effects of varying filler content on the thermal and mechanical performance of metakaolinite-based geopolymer composites designed for thermal energy storage applications. The composites were formulated using a geopolymer binder, combined with a thermally stable filler (ground chamotte) and a thermal energy storage filler (waste steel chips) in different proportions. Chamotte content within the binder matrix (binder + chamotte) ranged from 20 to 40 wt.%, while steel chip content varied from 0 to 40 wt.% of the total composite mass. The thermal properties of the composites were evaluated at room temperature and compared with conventional reference materials, including Ultraboard, chamotte brick, and magnetite brick. Mechanical performance, specifically flexural and compressive strength, was evaluated at room temperature and after exposure to elevated temperatures (800 and 1100 °C), followed by two cooling regimes, slow furnace cooling and rapid water quenching. Microstructural characterization via optical microscopy was used to examine filler dispersion and matrix-filler interactions. The results showed that the thermal effusivity of the optimized composites exceeded that of chamotte brick by more than 50%. The highest flexural (12.68 MPa) and compressive (86.18 MPa) strengths were achieved in the composite containing 20 wt.% steel chips, prior to thermal exposure. Microstructural observations revealed the diverse geometry of the steel chips and arrangement of the chamotte particles. These findings highlight the potential of incorporating metallic waste materials into geopolymer systems to develop multifunctional composites with improved thermal storage capacity and mechanical resilience.

摘要

本研究调查了不同填料含量对为热能储存应用设计的偏高岭土基地质聚合物复合材料的热性能和力学性能的影响。这些复合材料采用地质聚合物粘结剂配制而成,将热稳定填料(煅烧粘土)和热能储存填料(废钢屑)按不同比例混合。粘结剂基体(粘结剂+煅烧粘土)中的煅烧粘土含量为20至40 wt.%,而钢屑含量占复合材料总质量的0至40 wt.%。在室温下评估复合材料的热性能,并与传统参考材料进行比较,包括超板、煅烧粘土砖和磁铁矿砖。在室温下以及在暴露于高温(800和1100°C)后评估力学性能,随后采用两种冷却方式,即炉内缓慢冷却和快速水淬。通过光学显微镜进行微观结构表征,以检查填料分散情况和基体与填料的相互作用。结果表明,优化后的复合材料的热发射率比煅烧粘土砖高出50%以上。在热暴露之前,含20 wt.%钢屑的复合材料实现了最高的抗弯强度(12.68 MPa)和抗压强度(86.18 MPa)。微观结构观察揭示了钢屑的不同几何形状和煅烧粘土颗粒的排列方式。这些发现突出了将金属废料纳入地质聚合物体系以开发具有改善的热储存能力和机械弹性的多功能复合材料的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1913/12387336/9490b622d6ae/materials-18-03853-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验