Suppr超能文献

基于深度学习的最小熵加速评估用于高速量子随机数生成

Deep Learning-Based Min-Entropy-Accelerated Evaluation for High-Speed Quantum Random Number Generation.

作者信息

Guo Xiaomin, Zhou Wenhe, Luo Yue, Meng Xiangyu, Li Jiamin, Bian Yaoxing, Guo Yanqiang, Xiao Liantuan

机构信息

Key Laboratory of Advanced Transducers and Intelligent Control System, Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China.

College of Physics and Optoelectronics, Taiyuan University of Technology, Taiyuan 030024, China.

出版信息

Entropy (Basel). 2025 Jul 24;27(8):786. doi: 10.3390/e27080786.

Abstract

Secure communication is critically dependent on high-speed and high-security quantum random number generation (QRNG). In this work, we present a responsive approach to enhance the efficiency and security of QRNG by leveraging polarization-controlled heterodyne detection to simultaneously measure the quadrature amplitude and phase fluctuations of vacuum shot noise. To address the practical non-idealities inherent in QRNG systems, we investigate the critical impacts of imbalanced heterodyne detection, amplitude-phase overlap, finite-size effects, and security parameters on quantum conditional min-entropy derived from the entropy uncertainty principle. It effectively mitigates the overestimation of randomness and fortifies the system against potential eavesdropping attacks. For a high-security parameter of 10-20, QRNG achieves a true random bit extraction ratio of 83.16% with a corresponding real-time speed of 37.25 Gbps following a 16-bit analog-to-digital converter quantization and 1.4 GHz bandwidth extraction. Furthermore, we develop a deep convolutional neural network for rapid and accurate entropy evaluation. The entropy evaluation of 13,473 sets of quadrature data is processed in 68.89 s with a mean absolute percentage error of 0.004, achieving an acceleration of two orders of magnitude in evaluation speed. Extracting the shot noise with full detection bandwidth, the generation rate of QRNG using dual-quadrature heterodyne detection exceeds 85 Gbps. The research contributes to advancing the practical deployment of QRNG and expediting rapid entropy assessment.

摘要

安全通信严重依赖于高速且高安全性的量子随机数生成(QRNG)。在这项工作中,我们提出了一种响应式方法,通过利用偏振控制外差检测来同时测量真空散粒噪声的正交幅度和相位波动,以提高QRNG的效率和安全性。为了解决QRNG系统中固有的实际非理想性问题,我们研究了不平衡外差检测、幅度 - 相位重叠、有限尺寸效应以及安全参数对基于熵不确定性原理导出的量子条件最小熵的关键影响。它有效地减轻了随机性的高估,并增强了系统抵御潜在窃听攻击的能力。对于10^-20的高安全参数,QRNG在经过16位模数转换器量化和1.4 GHz带宽提取后,实现了83.16%的真随机比特提取率,相应的实时速度为37.25 Gbps。此外,我们开发了一种深度卷积神经网络用于快速准确的熵评估。对13473组正交数据的熵评估在68.89秒内完成,平均绝对百分比误差为0.004,评估速度提高了两个数量级。利用全检测带宽提取散粒噪声,采用双正交外差检测的QRNG生成速率超过85 Gbps。这项研究有助于推动QRNG的实际部署并加快快速熵评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/11f6/12385577/47d58bb26e03/entropy-27-00786-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验