Alpino Marcos G, Debarba Tiago, Vianna Reinaldo O, Cesário André T
Departamento de Física, ICEx, Universidade Federal de Minas Gerais, Av. Pres. Antônio Carlos 6627, Belo Horizonte 31270-901, MG, Brazil.
Departamento Acadêmico de Ciências da Natureza, Universidade Tecnológica Federal do Paraná, Cornélio Procópio 86300-000, PR, Brazil.
Entropy (Basel). 2025 Aug 3;27(8):824. doi: 10.3390/e27080824.
We investigate the role of a statistical complexity measure to assign equilibration in isolated quantum systems. While unitary dynamics preserve global purity, expectation values of observables often exhibit equilibration-like behavior, raising the question of whether a measure of complexity can track this process. In addition to examining observable equilibration, we extend our analysis to study how the complexity of the quantum states evolves, providing insight into the transition from initial coherence to equilibrium. We define a classical statistical complexity measure based on observable entropy and deviation from equilibrium, which captures the dynamical progression towards equilibration and effectively distinguishes between complex and non-complex trajectories. In particular, our measure is sensitive to non-complex dynamics. Such dynamics include the quasi-periodic behavior exhibited by low-dimensional initial states, where the system explores a limited region of Hilbert space while preserving coherence. Numerical simulations of an Ising-like non-integrable Hamiltonian spin-chain model support these findings. Our work provides new insight into the emergence of equilibrium behavior from unitary dynamics and advances complexity as a meaningful tool in the study of the emergence of classicality in microscopic systems.
我们研究一种统计复杂性度量在孤立量子系统中确定平衡状态的作用。虽然酉动力学保持全局纯度,但可观测量的期望值常常呈现出类似平衡的行为,这就引发了一个问题:复杂性度量能否追踪这一过程。除了研究可观测量的平衡,我们还扩展分析以研究量子态的复杂性如何演化,从而深入了解从初始相干到平衡的转变。我们基于可观测量熵和偏离平衡的程度定义了一种经典统计复杂性度量,它捕捉了向平衡的动态进展,并有效地区分了复杂和非复杂轨迹。特别是,我们的度量对非复杂动力学敏感。这类动力学包括低维初始态所表现出的准周期行为,在这种情况下,系统在保持相干性的同时探索希尔伯特空间的有限区域。类伊辛非可积哈密顿自旋链模型的数值模拟支持了这些发现。我们的工作为从酉动力学中出现平衡行为提供了新的见解,并将复杂性推进为研究微观系统中经典性出现的一个有意义的工具。