Suppr超能文献

人工智能在盆腔器官脱垂的诊断及基于影像学的评估中的应用:一项范围综述

Artificial Intelligence in the Diagnosis and Imaging-Based Assessment of Pelvic Organ Prolapse: A Scoping Review.

作者信息

Botoncea Marian, Molnar Călin, Butiurca Vlad Olimpiu, Nicolescu Cosmin Lucian, Molnar-Varlam Claudiu

机构信息

Faculty of Medicine, George Emil Palade University of Medicine, Pharmacy, Sciences and Technology of Targu Mures, 540139 Targu Mures, Romania.

General Surgery Clinic No.1, County Emergency Clinical Hospital of Targu-Mures, 540136 Targu Mures, Romania.

出版信息

Medicina (Kaunas). 2025 Aug 21;61(8):1497. doi: 10.3390/medicina61081497.

Abstract

: Pelvic organ prolapse (POP) is a complex condition affecting the pelvic floor, often requiring imaging for accurate diagnosis and treatment planning. Artificial intelligence (AI), particularly deep learning (DL), is emerging as a powerful tool in medical imaging. This scoping review aims to synthesize current evidence on the use of AI in the imaging-based diagnosis and anatomical evaluation of POP. : Following the PRISMA-ScR guidelines, a comprehensive search was conducted in PubMed, Scopus, and Web of Science for studies published between January 2020 and April 2025. Studies were included if they applied AI methodologies, such as convolutional neural networks (CNNs), vision transformers (ViTs), or hybrid models, to diagnostic imaging modalities such as ultrasound and magnetic resonance imaging (MRI) to women with POP. : Eight studies met the inclusion criteria. In these studies, AI technologies were applied to 2D/3D ultrasound and static or stress MRI for segmentation, anatomical landmark localization, and prolapse classification. CNNs were the most commonly used models, often combined with transfer learning. Some studies used hybrid models of ViTs, demonstrating high diagnostic accuracy. However, all studies relied on internal datasets, with limited model interpretability and no external validation. Moreover, clinical deployment and outcome assessments remain underexplored. : AI shows promise in enhancing POP diagnosis through improved image analysis, but current applications are largely exploratory. Future work should prioritize external validation, standardization, explainable AI, and real-world implementation to bridge the gap between experimental models and clinical utility.

摘要

盆腔器官脱垂(POP)是一种影响盆底的复杂病症,通常需要影像学检查以进行准确诊断和治疗规划。人工智能(AI),尤其是深度学习(DL),正成为医学成像领域的强大工具。本综述旨在综合当前关于AI在基于成像的POP诊断和解剖学评估中的应用证据。

遵循PRISMA-ScR指南,在PubMed、Scopus和Web of Science中对2020年1月至2025年4月发表的研究进行了全面检索。纳入的研究需将卷积神经网络(CNN)、视觉Transformer(ViT)或混合模型等AI方法应用于超声和磁共振成像(MRI)等诊断成像模态,以诊断患有POP的女性。

八项研究符合纳入标准。在这些研究中,AI技术被应用于二维/三维超声以及静态或应力MRI,用于分割、解剖标志定位和脱垂分类。CNN是最常用的模型,并经常与迁移学习相结合。一些研究使用了ViT的混合模型,显示出较高的诊断准确性。然而,所有研究都依赖内部数据集,模型可解释性有限且未进行外部验证。此外,临床应用和结果评估仍未得到充分探索。

AI有望通过改进图像分析来提高POP诊断水平,但目前的应用大多仍处于探索阶段。未来的工作应优先进行外部验证、标准化、可解释AI以及实际应用,以弥合实验模型与临床效用之间的差距。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0419/12388616/faab8f77210b/medicina-61-01497-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验