Jani Harshilkumar S, Ranch Ketan, Pandya Radhika, Patel Yashkumar, Boddu Sai H S, Tiwari Amit K, Jacob Shery, Yasin Haya Khader Ahmad
Department of Pharmaceutics, L. M. College of Pharmacy, Navrangpura, Ahmedabad 380009, Gujarat, India.
Research Scholar, PhD-Pharmacy, Gujarat Technological University, Ahmedabad 382424, Gujarat, India.
Pharmaceutics. 2025 Aug 21;17(8):1087. doi: 10.3390/pharmaceutics17081087.
Glaucoma is recognized as a chronic optic neuropathy marked by progressive optic nerve degeneration, loss of retinal ganglion cells (RGCs, the neurons responsible for transmitting visual information from the eye to the brain), disruptions in optic disc blood supply, and changes in glial cell activation. It ranks as the second most prevalent cause of irreversible visual impairment worldwide and is a resultant of increased intraocular pressure (IOP). Addressing this condition proves complex due to the inherent hindrances posed by ocular barriers, which curtail the entry of drugs into the eye. Diverse carriers such as inorganic nanoparticles, polymeric nanocarriers, hydrogels, and contact lens-based systems with distinct physical and chemical attributes are being studied for drug delivery. They have shown enhanced ocular drug bioavailability through higher penetration across ocular tissues, prolonged retention in the precorneal space, sustained drug release, and targeted delivery to specific tissues. These ingenious delivery systems can be deployed through various administration routes-intravitreal or periocular injections or systemic administration-enabling the drugs to reach affected areas, aiding in the regeneration of compromised optical nerves. This review presents a comprehensive exploration of contemporary strides in ocular delivery formulations pertaining to glaucoma. This encompasses an examination of various nanocarrier typologies, delivery routes, in vitro and in vivo effectiveness, clinical applicability, and a forward-looking perspective into potential future developments.
青光眼被认为是一种慢性视神经病变,其特征为视神经进行性退化、视网膜神经节细胞(RGCs,负责将视觉信息从眼睛传递至大脑的神经元)丧失、视盘血液供应中断以及胶质细胞活化改变。它是全球不可逆视力损害的第二大常见原因,是眼内压(IOP)升高的结果。由于眼部屏障带来的固有阻碍,限制了药物进入眼睛,因此治疗这种疾病颇具复杂性。正在研究各种具有不同物理和化学特性的载体,如无机纳米颗粒、聚合物纳米载体、水凝胶和基于隐形眼镜的系统用于药物递送。它们通过更高的眼部组织穿透性、在角膜前间隙的延长滞留、持续药物释放以及向特定组织的靶向递送,显示出提高的眼部药物生物利用度。这些巧妙的递送系统可以通过多种给药途径部署——玻璃体内或眼周注射或全身给药——使药物能够到达受影响区域,有助于受损视神经的再生。本综述全面探讨了与青光眼相关的眼部递送制剂的当代进展。这包括对各种纳米载体类型、递送途径、体外和体内有效性、临床适用性以及对潜在未来发展的前瞻性展望的研究。
Pharmaceutics. 2025-8-21
2025-1
2025-1
Arch Ital Urol Androl. 2025-6-30
Cochrane Database Syst Rev. 2015-12-1
Cochrane Database Syst Rev. 2015-11-30
Int J Nanomedicine. 2025-7-21
Polymers (Basel). 2025-5-23
Clin Exp Optom. 2025-4-28
Nanomedicine (Lond). 2025-7
Biomed Microdevices. 2025-4-21
Drug Des Devel Ther. 2025-4-2
Molecules. 2025-3-13
Hum Cell. 2025-3-24