Li Shefeng, Zhao Pengyi, Liu Ziyang, Wang Chang, Wang Linling, Ding Siyu
School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
Pilot Plant of Eco-Environment Chemical Industry and Carbon-Neutral Transformative Technologies, Wuhan 430023, China.
Molecules. 2025 Aug 15;30(16):3388. doi: 10.3390/molecules30163388.
Microwave-assisted processing has shown tremendous promise in accelerating chemical reactions and reducing energy consumption through targeted dielectric heating. This study develops MOF-derived Mn-Co and Ce-Co oxide catalysts for energy-efficient benzene oxidation via microwave catalysis. The MnCo spinel oxides (particularly MnCo11-400) exhibit superior microwave absorption and catalytic activity due to enhanced oxygen mobility and tailored dielectric properties. Microwave irradiation enables rapid benzene mineralization over the MnCo11-400 catalyst, achieving 78% conversion at 30 W and complete conversion at 50 W, demonstrating exceptional energy efficiency at low power inputs. Microwaves significantly lower the reaction temperature compared to conventional thermal catalysis (ΔT = 100-250 °C). Stability tests confirm robustness over repeated power cycling (80% conversion retained after 3 × 1 h on/off cycles). Furthermore, an adsorption-microwave oxidation synergistic strategy is demonstrated: pre-adsorbed low-concentration benzene (1.15 mmol) at ambient temperature undergoes complete mineralization within 20 min under 30 W microwave irradiation. The intermittent microwave operation achieves equivalent benzene removal to continuous thermal processing while significantly reducing energy demand. This work establishes MOF-derived spinel oxides as high-performance microwave catalysts for low-temperature VOC abatement.
微波辅助处理在通过定向介电加热加速化学反应和降低能耗方面展现出巨大潜力。本研究开发了源自金属有机框架(MOF)的锰钴和铈钴氧化物催化剂,用于通过微波催化实现高效苯氧化。锰钴尖晶石氧化物(特别是MnCo11 - 400)由于增强的氧迁移率和定制的介电性能而表现出优异的微波吸收和催化活性。微波辐射能够使MnCo11 - 400催化剂上的苯快速矿化,在30 W功率下实现78%的转化率,在50 W功率下实现完全转化,在低功率输入时展现出卓越的能源效率。与传统热催化相比,微波显著降低了反应温度(ΔT = 100 - 250 °C)。稳定性测试证实了在重复功率循环下的稳定性(在3次1小时开/关循环后仍保留80%的转化率)。此外,还展示了一种吸附 - 微波氧化协同策略:在室温下预吸附的低浓度苯(1.15 mmol)在30 W微波辐射下20分钟内完全矿化。间歇微波操作实现了与连续热处理相当的苯去除效果,同时显著降低了能源需求。这项工作确立了源自MOF的尖晶石氧化物作为用于低温挥发性有机化合物(VOC)减排的高性能微波催化剂。