Suppr超能文献

FreqDyn-YOLO:一种用于检测农田中塑料薄膜残留的高性能多尺度特征融合算法。

FreqDyn-YOLO: A High-Performance Multi-Scale Feature Fusion Algorithm for Detecting Plastic Film Residues in Farmland.

作者信息

Zhang Mingyang, Zhang Jianjie, Peng Yihang, Wang Yi

机构信息

College of Software, Xinjiang University, Urumqi 830091, China.

College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China.

出版信息

Sensors (Basel). 2025 Aug 8;25(16):4888. doi: 10.3390/s25164888.

Abstract

Plastic mulch technology plays an important role in increasing agricultural productivity and economic returns. However, residual mulch remaining in agricultural fields poses significant challenges to both crop production and environmental sustainability. Effective recovery and recycling of residual plastic mulch requires accurate detection and identification of mulch fragments, which presents a substantial technical challenge. The detection of residual plastic film is complicated by several factors: the visual similarity between residual film fragments and soil in terms of color and texture, as well as the irregular shapes and variable sizes of the target objects. To address these challenges, this study develops FreqDyn-YOLO, a detection model for residual film identification in agricultural environments based on the YOLO11 architecture. The proposed methodology introduces three main technical contributions. First, a Frequency-C3k2 (FreqC3) feature extraction module is implemented, which employs a Frequency Feature Transposed Attention (FreqFTA) mechanism to improve discrimination between residual film and soil backgrounds. Second, a High-Performance Multi-Scale Feature Pyramid Network (HPMSFPN) is developed to enable effective cross-layer feature fusion, enhancing detection performance across different target scales. Third, a Dynamic Detection Head With DCNv4 (DWD4) is introduced to improve the model's ability to adapt to varying film morphologies while maintaining computational efficiency. Experimental findings on a self-developed agricultural field residual film dataset confirm that FreqDyn-YOLO outperforms the baseline approach, achieving improvements of 5.37%, 1.97%, and 2.96% in mAP50, precision, and recall, respectively. The model also demonstrates superior performance compared to other recent detection methods. This work provides a technical foundation for precise residual film identification in agricultural applications and shows promise for integration into automated recovery systems.

摘要

塑料地膜技术在提高农业生产率和经济效益方面发挥着重要作用。然而,残留在农田中的地膜对作物生产和环境可持续性都构成了重大挑战。有效回收和再利用残留塑料地膜需要准确检测和识别地膜碎片,这带来了巨大的技术挑战。残留塑料薄膜的检测因几个因素而变得复杂:残留薄膜碎片与土壤在颜色和质地方面的视觉相似性,以及目标物体的不规则形状和可变大小。为应对这些挑战,本研究开发了FreqDyn-YOLO,这是一种基于YOLO11架构的农业环境中残留薄膜识别检测模型。所提出的方法有三个主要技术贡献。首先,实现了一个频率C3k2(FreqC3)特征提取模块,该模块采用频率特征转置注意力(FreqFTA)机制来提高残留薄膜与土壤背景之间的区分度。其次,开发了一个高性能多尺度特征金字塔网络(HPMSFPN),以实现有效的跨层特征融合,增强不同目标尺度下的检测性能。第三,引入了一个带有DCNv4的动态检测头(DWD4),以提高模型适应不同薄膜形态的能力,同时保持计算效率。在自行开发的农田残留薄膜数据集上的实验结果证实,FreqDyn-YOLO优于基线方法,在mAP50、精度和召回率方面分别提高了5.37%、1.97%和2.96%。与其他近期检测方法相比,该模型也表现出卓越的性能。这项工作为农业应用中精确识别残留薄膜提供了技术基础,并显示出有望集成到自动回收系统中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/08ad/12389573/f56cd13f4281/sensors-25-04888-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验