Suppr超能文献

基于原型模型预训练和基于检查平衡的决策融合的上下文引导合成孔径雷达舰船检测

Context-Guided SAR Ship Detection with Prototype-Based Model Pretraining and Check-Balance-Based Decision Fusion.

作者信息

Zhou Haowen, Geng Zhe, Sun Minjie, Wu Linyi, Yan He

机构信息

College of Electronics and Information Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China.

出版信息

Sensors (Basel). 2025 Aug 10;25(16):4938. doi: 10.3390/s25164938.

Abstract

To address the challenging problem of multi-scale inshore-offshore ship detection in synthetic aperture radar (SAR) remote sensing images, we propose a novel deep learning-based automatic ship detection method within the framework of compositional learning. The proposed method is supported by three pillars: context-guided region proposal, prototype-based model-pretraining, and multi-model ensemble learning. To reduce the false alarms induced by the discrete ground clutters, the prior knowledge of the harbour's layout is exploited to generate land masks for terrain delimitation. To prepare the model for the diverse ship targets of different sizes and orientations it might encounter in the test environment, a novel cross-dataset model pretraining strategy is devised, where the SAR images of several key ship target prototypes from the auxiliary dataset are used to support class-incremental learning. To combine the advantages of diverse model architectures, an adaptive decision-level fusion framework is proposed, which consists of three components: a dynamic confidence threshold assignment strategy based on the sizes of targets, a weighted fusion mechanism based on president-senate check-balance, and Soft-NMS-based Dense Group Target Bounding Box Fusion (Soft-NMS-DGT-BBF). The performance enhancement brought by contextual knowledge-aided terrain delimitation, cross-dataset prototype-based model pretraining and check-balance-based adaptive decision-level fusion are validated with a series of ingeniously devised experiments based on the FAIR-CSAR-Ship dataset.

摘要

为了解决合成孔径雷达(SAR)遥感图像中多尺度近岸-近海船舶检测这一具有挑战性的问题,我们在组合学习框架内提出了一种基于深度学习的新型自动船舶检测方法。该方法由三个支柱支撑:上下文引导的区域提议、基于原型的模型预训练和多模型集成学习。为了减少离散地面杂波引起的误报,利用港口布局的先验知识生成陆地掩码用于地形界定。为了使模型能够应对测试环境中可能遇到的不同大小和方向的各种船舶目标,设计了一种新颖的跨数据集模型预训练策略,其中来自辅助数据集的几个关键船舶目标原型的SAR图像用于支持类增量学习。为了结合不同模型架构的优势,提出了一种自适应决策级融合框架,它由三个部分组成:基于目标大小的动态置信度阈值分配策略、基于总统-参议院制衡的加权融合机制以及基于Soft-NMS的密集群组目标边界框融合(Soft-NMS-DGT-BBF)。基于FAIR-CSAR-Ship数据集通过一系列精心设计的实验验证了上下文知识辅助地形界定、基于跨数据集原型的模型预训练和基于制衡的自适应决策级融合所带来的性能提升。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/37e4/12389763/35ea7f5fe176/sensors-25-04938-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验