Hu Dong, Lin Yizhou, Li Shilong, Wu Jing, Ma Hongwei
School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan 523808, China.
Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering, Dongguan 523808, China.
Sensors (Basel). 2025 Aug 11;25(16):4959. doi: 10.3390/s25164959.
Structural health monitoring (SHM) is vital for ensuring structural integrity by continuously evaluating conditions through sensor data. However, sensor anomalies caused by external disturbances can severely compromise the effectiveness of SHM systems. Traditional anomaly detection methods face significant challenges due to reliance on large labeled datasets, difficulties in handling long-term dependencies, and issues stemming from class imbalance. To address these limitations, this study introduces a hierarchical attention Transformer (HAT)-based method specifically designed for sensor anomaly detection in SHM applications. HAT leverages hierarchical temporal modeling with local and global Transformer encoders to effectively capture complex, multi-scale anomaly patterns. Evaluated on a real-world dataset from a large cable-stayed bridge, HAT achieves superior accuracy (96.3%) and robustness even with limited labeled data (20%), significantly outperforming traditional models like CNN, LSTM, and RNN. Additionally, this study visualizes the convergence process of the model, demonstrating its fast convergence and strong generalization capabilities. Thus, the proposed HAT method provides a practical and effective solution for anomaly detection in complex SHM scenarios.
结构健康监测(SHM)对于通过传感器数据持续评估结构状况以确保结构完整性至关重要。然而,由外部干扰引起的传感器异常会严重损害SHM系统的有效性。传统的异常检测方法由于依赖大量标记数据集、处理长期依赖性困难以及类不平衡问题而面临重大挑战。为了解决这些局限性,本研究引入了一种基于分层注意力Transformer(HAT)的方法,专门用于SHM应用中的传感器异常检测。HAT利用局部和全局Transformer编码器进行分层时间建模,以有效捕获复杂的多尺度异常模式。在一个来自大型斜拉桥的真实世界数据集上进行评估,即使在标记数据有限(20%)的情况下,HAT也能实现卓越的准确率(96.3%)和鲁棒性,显著优于CNN、LSTM和RNN等传统模型。此外,本研究可视化了模型的收敛过程,展示了其快速收敛和强大的泛化能力。因此,所提出的HAT方法为复杂SHM场景中的异常检测提供了一种实用有效的解决方案。