Suppr超能文献

基于维度变换结合多维多尺度卷积注意力机制的高效风电功率预测

DTCMMA: Efficient Wind-Power Forecasting Based on Dimensional Transformation Combined with Multidimensional and Multiscale Convolutional Attention Mechanism.

作者信息

Song Wenhan, Zuo Enguang, Zhu Junyu, Chen Chen, Chen Cheng, Yan Ziwei, Lv Xiaoyi

机构信息

School of Computer Science and Technology, Xinjiang University, Urumqi 830046, China.

School of Intelligence Science and Technology, Xinjiang University, Urumqi 830017, China.

出版信息

Sensors (Basel). 2025 Jul 22;25(15):4530. doi: 10.3390/s25154530.

Abstract

With the growing global demand for clean energy, the accuracy of wind-power forecasting plays a vital role in ensuring the stable operation of power systems. However, wind-power generation is significantly influenced by meteorological conditions and is characterized by high uncertainty and multiscale fluctuations. Traditional recurrent neural network (RNN) and long short-term memory (LSTM) models, although capable of handling sequential data, struggle with modeling long-term temporal dependencies due to the vanishing gradient problem; thus, they are now rarely used. Recently, Transformer models have made notable progress in sequence modeling compared to RNNs and LSTM models. Nevertheless, when dealing with long wind-power sequences, their quadratic computational complexity (O(L)) leads to low efficiency, and their global attention mechanism often fails to capture local periodic features accurately, tending to overemphasize redundant information while overlooking key temporal patterns. To address these challenges, this paper proposes a wind-power forecasting method based on dimension-transformed collaborative multidimensional multiscale attention (DTCMMA). This method first employs fast Fourier transform (FFT) to automatically identify the main periodic components in wind-power data, reconstructing the one-dimensional time series as a two-dimensional spatiotemporal representation, thereby explicitly encoding periodic features. Based on this, a collaborative multidimensional multiscale attention (CMMA) mechanism is designed, which hierarchically integrates channel, spatial, and pixel attention to adaptively capture complex spatiotemporal dependencies. Considering the geometric characteristics of the reconstructed data, asymmetric convolution kernels are adopted to enhance feature extraction efficiency. Experiments on multiple wind-farm datasets and energy-related datasets demonstrate that DTCMMA outperforms mainstream methods such as Transformer, iTransformer, and TimeMixer in long-sequence forecasting tasks, achieving improvements in MSE performance by 34.22%, 2.57%, and 0.51%, respectively. The model's training speed also surpasses that of the fastest baseline by 300%, significantly improving both prediction accuracy and computational efficiency. This provides an efficient and accurate solution for wind-power forecasting and contributes to the further development and application of wind energy in the global energy mix.

摘要

随着全球对清洁能源的需求不断增长,风电功率预测的准确性对于确保电力系统的稳定运行起着至关重要的作用。然而,风力发电受到气象条件的显著影响,具有高度不确定性和多尺度波动的特点。传统的递归神经网络(RNN)和长短期记忆(LSTM)模型虽然能够处理序列数据,但由于梯度消失问题,在对长期时间依赖性进行建模时存在困难;因此,它们现在很少被使用。最近,与RNN和LSTM模型相比,Transformer模型在序列建模方面取得了显著进展。然而,在处理长风电序列时,其二次计算复杂度(O(L))导致效率低下,并且其全局注意力机制往往无法准确捕捉局部周期性特征,倾向于过度强调冗余信息而忽略关键时间模式。为了应对这些挑战,本文提出了一种基于维度变换协作多维多尺度注意力(DTCMMA)的风电功率预测方法。该方法首先采用快速傅里叶变换(FFT)自动识别风电数据中的主要周期性成分,将一维时间序列重构为二维时空表示,从而明确编码周期性特征。在此基础上,设计了一种协作多维多尺度注意力(CMMA)机制,该机制分层集成通道、空间和像素注意力,以自适应捕捉复杂的时空依赖性。考虑到重构数据的几何特征,采用非对称卷积核来提高特征提取效率。在多个风电场数据集和能源相关数据集上的实验表明,DTCMMA在长序列预测任务中优于Transformer、iTransformer和TimeMixer等主流方法,MSE性能分别提高了34.22%、2.57%和0.51%。该模型训练速度也比最快的基线快300%,显著提高了预测精度和计算效率。这为风电功率预测提供了一种高效准确的解决方案,有助于风能在全球能源结构中的进一步发展和应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e0ca/12349295/7cbd88fc8937/sensors-25-04530-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验