Guo Yue, Pei Yan, Yao Rong, Yan Yueming, Song Meirong, Li Haifang
College of Computer Science and Technology (College of Data Science), Taiyuan University of Technology, Jinzhong 030600, China.
College of Computer Information Engineering, Shanxi Technology and Business University, Taiyuan 030006, China.
Sensors (Basel). 2025 Aug 12;25(16):4989. doi: 10.3390/s25164989.
Existing methods for diagnosing depression rely heavily on subjective evaluations, whereas electroencephalography (EEG) emerges as a promising approach for objective diagnosis due to its non-invasiveness, low cost, and high temporal resolution. However, current EEG analysis methods are constrained by volume conduction effect and class imbalance, both of which adversely affect classification performance. To address these issues, this paper proposes a multi-stage deep learning model for EEG-based depression classification, integrating a cortical feature extraction strategy (CFE), a feature attention module (FA), a graph convolutional network (GCN), and a focal adversarial domain adaptation module (FADA). Specifically, the CFE strategy reconstructs brain cortical signals using the standardized low-resolution brain electromagnetic tomography (sLORETA) algorithm and extracts both linear and nonlinear features that capture cortical activity variations. The FA module enhances feature representation through a multi-head self-attention mechanism, effectively capturing spatiotemporal relationships across distinct brain regions. Subsequently, the GCN further extracts spatiotemporal EEG features by modeling functional connectivity between brain regions. The FADA module employs Focal Loss and Gradient Reversal Layer (GRL) mechanisms to suppress domain-specific information, alleviate class imbalance, and enhance intra-class sample aggregation. Experimental validation on the publicly available PRED+CT dataset demonstrates that the proposed model achieves a classification accuracy of 85.33%, outperforming current state-of-the-art methods by 2.16%. These results suggest that the proposed model holds strong potential for improving the accuracy and reliability of EEG-based depression classification.
现有的抑郁症诊断方法严重依赖主观评估,而脑电图(EEG)因其非侵入性、低成本和高时间分辨率,成为一种有前景的客观诊断方法。然而,当前的EEG分析方法受到容积传导效应和类别不平衡的限制,这两者均对分类性能产生不利影响。为了解决这些问题,本文提出了一种基于EEG的抑郁症分类多阶段深度学习模型,集成了皮质特征提取策略(CFE)、特征注意力模块(FA)、图卷积网络(GCN)和焦点对抗域适应模块(FADA)。具体而言CFE策略使用标准化低分辨率脑电磁断层扫描(sLORETA)算法重建脑皮质信号,并提取捕捉皮质活动变化的线性和非线性特征。FA模块通过多头自注意力机制增强特征表示,有效捕捉不同脑区之间的时空关系。随后,GCN通过对脑区之间的功能连接进行建模,进一步提取EEG时空特征。FADA模块采用焦点损失和梯度反转层(GRL)机制来抑制特定领域信息,缓解类别不平衡,并增强类内样本聚集。在公开可用的PRED+CT数据集上的实验验证表明,所提出的模型实现了85.33%的分类准确率,比当前最先进的方法高出2.16%。这些结果表明,所提出的模型在提高基于EEG的抑郁症分类的准确性和可靠性方面具有强大潜力。