Reddy K Divya, Patil Anitha
Research Scholar, Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Aziz Nagar, Hyderabad, Telangana, 500075, India.
Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Aziz Nagar, Hyderabad, Telangana, 500075, India.
Sci Rep. 2025 Aug 31;15(1):32022. doi: 10.1038/s41598-025-16669-z.
Chest X-ray (CXR) is a challenging problem in automated medical diagnosis, where complex visual patterns of thoracic diseases must be precisely identified through multi-label classification and lesion localization. Current approaches typically consider classification and localization in isolation, resulting in a piecemeal system that does not exploit common representations and is often not clinically interpretable, as well as limited in handling multi-label diseases. Although multi-task learning frameworks, such as DeepChest and CLN, appear to meet this goal, they suffer from task interference and poor explainability, which limits their practical application in real-world clinical workflows. To address these limitations, we present a unified multi-task deep learning framework, CXR-MultiTaskNet, for simultaneously classifying thoracic diseases and localizing lesions in chest X-rays. Our framework comprises a standard ResNet50 feature extractor, two task-specific heads for multi-task learning, and a Grad-CAM-based explainability module that provides accurate predictions and enhances clinical explainability. We formulate a joint loss that weighs the relative importance of representation extraction, which is large due to class variations, and the final loss, which is larger in the detection loss that occurs in extreme class imbalances between days and the detectability of varying disease manifestation types. Recent advances made by deep learning methods in the identification of disease in chest X-ray images are promising; however, there are limitations in their performance for complete analysis due to the lack of interpretability, some inherent weaknesses of convolutional neural networks (CNN), and prior learning of classification at the image level before localization of the disease. In this paper, we propose a dual-attention-based hierarchical feature extraction approach, which addresses the challenges of deep learning in detecting diseases in chest X-ray images. Through the use of visual attention maps, the detection steps can be better tracked, and therefore, the entire process is made more interpretable than with a traditional CNN-embedding model. We also manage to obtain both disease-level and pixel-level predictions, which enable explainable and comprehensive analysis of each image and aid in localizing each detected abnormality area. The proposed approach was further optimized for X-ray images by computing the objective losses during training, which ultimately gives higher significance to smaller lesions. Experimental evaluations on a benchmark chest X-ray dataset demonstrate the potential of the proposed approach achieving a macro F1-score of 0.965 (0.968 micro F1-score) for disease classification and mean IoU of 0.851 (mAP@0.50) for localization of diseases Content: Model intepretability, Chest X-ray image disease detection, Detection region localization, Weakly supervised transfer learning Lesion localization → 5 of 0.927 Compared to state-of-the-art single-task and multi-task baselines, these results are consistently better. The presented framework provides an integrated, method-based approach to chest X-ray analysis that is clinically useful, interpretable, and scalable for automation, allowing for efficient diagnostic pathways and enhanced clinical decision-making. This single framework can serve as a router for next-gen explainable AI in radiology.
胸部X光(CXR)在自动医学诊断中是一个具有挑战性的问题,其中必须通过多标签分类和病变定位来精确识别胸部疾病的复杂视觉模式。当前的方法通常孤立地考虑分类和定位,导致一个零碎的系统,该系统没有利用共同的表示,通常在临床上难以解释,并且在处理多标签疾病方面也受到限制。尽管多任务学习框架,如DeepChest和CLN,似乎符合这一目标,但它们存在任务干扰和可解释性差的问题,这限制了它们在实际临床工作流程中的实际应用。为了解决这些限制,我们提出了一个统一的多任务深度学习框架CXR-MultiTaskNet,用于同时对胸部疾病进行分类和定位胸部X光片中的病变。我们的框架包括一个标准的ResNet50特征提取器、两个用于多任务学习的特定任务头部,以及一个基于Grad-CAM的可解释性模块,该模块提供准确的预测并增强临床可解释性。我们制定了一个联合损失,该损失权衡了由于类别变化而较大的表示提取的相对重要性,以及最终损失,最终损失在天数之间极端类别不平衡时发生的检测损失以及不同疾病表现类型的可检测性方面更大。深度学习方法在胸部X光图像疾病识别方面取得的最新进展很有前景;然而,由于缺乏可解释性、卷积神经网络(CNN)的一些固有弱点以及在疾病定位之前在图像级别进行分类的先验学习,它们在完整分析的性能方面存在局限性。在本文中,我们提出了一种基于双注意力的分层特征提取方法,该方法解决了深度学习在检测胸部X光图像疾病方面的挑战。通过使用视觉注意力图,可以更好地跟踪检测步骤,因此,整个过程比传统的CNN嵌入模型更具可解释性。我们还设法获得疾病级别和像素级别的预测,这使得能够对每个图像进行可解释和全面的分析,并有助于定位每个检测到的异常区域。通过在训练期间计算目标损失,对所提出的方法进行了进一步优化,最终对较小的病变赋予了更高的重要性。在一个基准胸部X光数据集上的实验评估表明,所提出的方法在疾病分类方面实现宏观F1分数为0.965(微观F1分数为0.968)以及在疾病定位方面实现平均交并比为0.851(mAP@0.50)的潜力。与最先进的单任务和多任务基线相比,这些结果始终更好。所提出的框架提供了一种基于方法的综合方法来进行胸部X光分析,该方法在临床上有用、可解释且可扩展以实现自动化,允许高效的诊断途径并增强临床决策。这个单一框架可以作为放射学中下一代可解释人工智能的路由器。
内容:模型可解释性、胸部X光图像疾病检测、检测区域定位、弱监督迁移学习 病变定位→0.927中的5个 与最先进的单任务和多任务基线相比,这些结果始终更好。所提出的框架提供了一种基于方法的综合方法来进行胸部X光分析,该方法在临床上有用、可解释且可扩展以实现自动化,允许高效的诊断途径并增强临床决策。这个单一框架可以作为放射学中下一代可解释人工智能的路由器。
2025-1
Psychopharmacol Bull. 2024-7-8
JBJS Essent Surg Tech. 2025-8-15
IEEE Trans Med Imaging. 2025-6
Diagnostics (Basel). 2025-1-22
Diagnostics (Basel). 2024-11-22
Biomed Eng Online. 2023-12-6