Zhang Wenlong, Fang Aiqing, Li Ying, Wei Yan
College of Computer and Information Science, Chongqing Normal University, Chongqing 401331, China.
Ningbo Research Institute of Northwestern Polytechnical University, Xi'an 710072, China.
Sensors (Basel). 2025 Aug 13;25(16):5003. doi: 10.3390/s25165003.
In multimodal collaborative learning, the gradient dynamics of heterogeneous modalities face significant challenges due to the curvature heterogeneity of parameter manifolds and mismatches in phase evolution. Traditional Euclidean optimization methods struggle to capture the complex interdependencies between heterogeneous modalities on non-Euclidean or geometrically inconsistent parameter manifolds. Furthermore, static alignment strategies often fail to suppress bifurcations and oscillatory behaviors in high-dimensional gradient flows, leading to unstable optimization trajectories across modalities. To address these issues, inspired by hyperbolic geometry and symplectic structures, this paper proposes the Hyperbolic Cosine-Based Symplectic Phase Alignment (HC-SPA) fusion optimization framework. The proposed approach leverages the geometric properties of hyperbolic space to coordinate gradient flows between modalities, aligns gradient update directions through a phase synchronization mechanism, and dynamically adjusts the optimization step size to adapt to manifold curvature. Experimental results on public fusion and semantic segmentation datasets demonstrate that HC-SPA significantly improves multimodal fusion performance and optimization stability, providing a new optimization perspective for complex multimodal tasks.
在多模态协作学习中,由于参数流形的曲率异质性和相位演化的不匹配,异构模态的梯度动力学面临重大挑战。传统的欧几里得优化方法难以捕捉非欧几里得或几何不一致参数流形上异构模态之间的复杂相互依赖关系。此外,静态对齐策略往往无法抑制高维梯度流中的分岔和振荡行为,导致跨模态的优化轨迹不稳定。为了解决这些问题,受双曲几何和辛结构的启发,本文提出了基于双曲余弦的辛相位对齐(HC-SPA)融合优化框架。所提出的方法利用双曲空间的几何特性来协调模态之间的梯度流,通过相位同步机制对齐梯度更新方向,并动态调整优化步长以适应流形曲率。在公共融合和语义分割数据集上的实验结果表明,HC-SPA显著提高了多模态融合性能和优化稳定性,为复杂的多模态任务提供了新的优化视角。