Yue Jun, Fang Leyuan, Xia Shaobo, Deng Yue, Ma Jiayi
IEEE Trans Image Process. 2023;32:5705-5720. doi: 10.1109/TIP.2023.3322046. Epub 2023 Oct 24.
Color plays an important role in human visual perception, reflecting the spectrum of objects. However, the existing infrared and visible image fusion methods rarely explore how to handle multi-spectral/channel data directly and achieve high color fidelity. This paper addresses the above issue by proposing a novel method with diffusion models, termed as Dif-Fusion, to generate the distribution of the multi-channel input data, which increases the ability of multi-source information aggregation and the fidelity of colors. In specific, instead of converting multi-channel images into single-channel data in existing fusion methods, we create the multi-channel data distribution with a denoising network in a latent space with forward and reverse diffusion process. Then, we use the the denoising network to extract the multi-channel diffusion features with both visible and infrared information. Finally, we feed the multi-channel diffusion features to the multi-channel fusion module to directly generate the three-channel fused image. To retain the texture and intensity information, we propose multi-channel gradient loss and intensity loss. Along with the current evaluation metrics for measuring texture and intensity fidelity, we introduce Delta E as a new evaluation metric to quantify color fidelity. Extensive experiments indicate that our method is more effective than other state-of-the-art image fusion methods, especially in color fidelity. The source code is available at https://github.com/GeoVectorMatrix/Dif-Fusion.
颜色在人类视觉感知中起着重要作用,反映了物体的光谱。然而,现有的红外与可见光图像融合方法很少探索如何直接处理多光谱/通道数据并实现高色彩保真度。本文通过提出一种使用扩散模型的新方法(称为Dif-Fusion)来解决上述问题,以生成多通道输入数据的分布,这增强了多源信息聚合能力和色彩保真度。具体而言,与现有融合方法将多通道图像转换为单通道数据不同,我们在具有正向和反向扩散过程的潜在空间中使用去噪网络创建多通道数据分布。然后,我们使用去噪网络提取包含可见光和红外信息的多通道扩散特征。最后,我们将多通道扩散特征输入到多通道融合模块中,直接生成三通道融合图像。为了保留纹理和强度信息,我们提出了多通道梯度损失和强度损失。除了当前用于测量纹理和强度保真度的评估指标外,我们引入Delta E作为一种新的评估指标来量化色彩保真度。大量实验表明,我们的方法比其他现有先进图像融合方法更有效,尤其是在色彩保真度方面。源代码可在https://github.com/GeoVectorMatrix/Dif-Fusion获取。