Suppr超能文献

一种用于低频隔振和宽带能量收集的带有阵列压电悬臂梁的集成准零刚度机构。

An Integrated Quasi-Zero-Stiffness Mechanism with Arrayed Piezoelectric Cantilevers for Low-Frequency Vibration Isolation and Broadband Energy Harvesting.

作者信息

Guo Kangkang, Sun Anjie, He Junhai

机构信息

School of Measurement and Communication Engineering, Harbin University of Science and Technology, Harbin 150080, China.

出版信息

Sensors (Basel). 2025 Aug 20;25(16):5180. doi: 10.3390/s25165180.

Abstract

To address the collaborative demand for low-frequency vibration control and energy recovery, this paper proposes a dual-functional structure integrating low-frequency vibration isolation and broadband energy harvesting. The structure consists of two core components: one is a quasi-zero stiffness (QZS) vibration isolation module composed of a linkage-horizontal spring (negative stiffness) and a vertical spring; the other is an energy-harvesting component with an array of parameter-differentiated piezoelectric cantilever beams. Aiming at the conflict between the structural dynamic stiffness approaching zero and broadening the effective working range, this paper establishes a dual-objective optimization function based on the Pareto principle on the basis of static analysis and uses the grid search method combined with actual working conditions to determine the optimal parameter combination. By establishing a multi-degree-of-freedom electromechanical coupling model, the harmonic balance method is used to derive analytical solutions, which are then verified by numerical simulations. The influence laws of external excitations and system parameters on vibration isolation and energy-harvesting performance are quantitatively analyzed. The results show that the optimized structure has an initial vibration isolation frequency below 2 Hz, with a vibration isolation rate exceeding 60% in the 3 to 5 Hz ultra-low frequency range and a minimum transmissibility of the order of 10 (vibration isolation rate > 98%). The parameter-differentiated piezoelectric array effectively broadens the energy-harvesting frequency band, which coincides with the vibration isolation range. Synergistic optimization of both performances can be achieved by adjusting system damping, parameters of piezoelectric vibrators, and load resistance. This study provides a theoretical reference for the integrated design of low-frequency vibration control and energy recovery, and its engineering implementation requires further experimental verification.

摘要

为满足低频振动控制与能量回收的协同需求,本文提出一种集成低频隔振与宽带能量收集的双功能结构。该结构由两个核心部件组成:一个是由连杆-水平弹簧(负刚度)和垂直弹簧构成的准零刚度(QZS)隔振模块;另一个是具有参数差异化压电悬臂梁阵列的能量收集部件。针对结构动态刚度趋近于零与拓宽有效工作范围之间的矛盾,本文在静力分析的基础上基于帕累托原理建立双目标优化函数,并结合实际工况采用网格搜索法确定最优参数组合。通过建立多自由度机电耦合模型,采用谐波平衡法推导解析解,然后通过数值模拟进行验证。定量分析了外部激励和系统参数对隔振与能量收集性能的影响规律。结果表明,优化后的结构初始隔振频率低于2Hz,在3至5Hz的超低频范围内隔振率超过60%,最小传递率为10左右(隔振率>98%)。参数差异化压电阵列有效拓宽了能量收集频带,与隔振范围相吻合。通过调整系统阻尼、压电振子参数和负载电阻可实现两种性能的协同优化。本研究为低频振动控制与能量回收的一体化设计提供了理论参考,其工程实现还需进一步的实验验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/77ba/12390003/037af70b5801/sensors-25-05180-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验