Wang Donglin, Shi Longfei, Yin Huiqing, Cheng Yuhan, Liu Shaobo, Wu Siyu, Yang Guangguang, Dong Qinge, Ge Jiankun, Li Yanbin
College of Water Conservancy, North China University of Water Resources and Electric Power, Zhengzhou 450000, China.
School of Water Resources and Environment Engineering, Nanyang Normal University, Nanyang 473061, China.
Plants (Basel). 2025 Aug 9;14(16):2475. doi: 10.3390/plants14162475.
This study presents an innovative unmanned aerial vehicle (UAV)-based intelligent detection method utilizing an improved Faster Region-based Convolutional Neural Network (Faster R-CNN) architecture to address the inefficiency and inaccuracy inherent in manual wheat spike counting. We systematically collected a high-resolution image dataset (2000 images, 4096 × 3072 pixels) covering key growth stages (heading, grain filling, and maturity) of winter wheat ( L.) during 2022-2023 using a DJI M300 RTK equipped with multispectral sensors. The dataset encompasses diverse field scenarios under five fertilization treatments (organic-only, organic-inorganic 7:3 and 3:7 ratios, inorganic-only, and no fertilizer) and two irrigation regimes (full and deficit irrigation), ensuring representativeness and generalizability. For model development, we replaced conventional VGG16 with ResNet-50 as the backbone network, incorporating residual connections and channel attention mechanisms to achieve 92.1% mean average precision (mAP) while reducing parameters from 135 M to 77 M (43% decrease). The GFLOPS of the improved model has been reduced from 1.9 to 1.7, an decrease of 10.53%, and the computational efficiency of the model has been improved. Performance tests demonstrated a 15% reduction in missed detection rate compared to YOLOv8 in dense canopies, with spike count regression analysis yielding = 0.88 ( < 0.05) against manual measurements and yield prediction errors below 10% for optimal treatments. To validate robustness, we established a dedicated 500-image test set (25% of total data) spanning density gradients (30-80 spikes/m) and varying illumination conditions, maintaining >85% accuracy even under cloudy weather. Furthermore, by integrating spike recognition with agronomic parameters (e.g., grain weight), we developed a comprehensive yield estimation model achieving 93.5% accuracy under optimal water-fertilizer management (70% ETc irrigation with 3:7 organic-inorganic ratio). This work systematically addresses key technical challenges in automated spike detection through standardized data acquisition, lightweight model design, and field validation, offering significant practical value for smart agriculture development.
本研究提出了一种基于无人机的创新智能检测方法,该方法利用改进的基于区域的快速卷积神经网络(Faster R-CNN)架构,以解决人工计数小麦穗粒数时存在的效率低下和不准确问题。我们在2022 - 2023年期间,使用配备多光谱传感器的大疆M300 RTK系统地收集了一个高分辨率图像数据集(2000张图像,4096×3072像素),该数据集涵盖了冬小麦(L.)关键生长阶段(抽穗期、灌浆期和成熟期)。该数据集包含了五种施肥处理(仅有机肥料、有机 - 无机比例为7:3和3:7、仅无机肥料以及不施肥)和两种灌溉制度(充分灌溉和亏缺灌溉)下的各种田间场景,确保了代表性和通用性。在模型开发方面,我们用ResNet - 50替换了传统的VGG16作为骨干网络,融入了残差连接和通道注意力机制,实现了92.1%的平均精度均值(mAP),同时参数从135M减少到77M(减少了43%)。改进后的模型的每秒浮点运算次数(GFLOPS)从1.9降至1.7,降低了10.53%,提高了模型的计算效率。性能测试表明,在密集冠层中,与YOLOv8相比,漏检率降低了15%,穗粒数回归分析与人工测量的相关系数R² = 0.88(P < 0.05),最佳处理的产量预测误差低于10%。为了验证鲁棒性,我们建立了一个包含500张图像的专用测试集(占总数据的25%),涵盖密度梯度(30 - 80穗/平方米)和不同光照条件,即使在多云天气下准确率也能保持>85%。此外,通过将穗粒识别与农艺参数(如粒重)相结合,我们开发了一个综合产量估计模型,在最佳水肥管理(70%作物需水量灌溉,有机 - 无机比例为3:7)下准确率达到93.5%。这项工作通过标准化数据采集、轻量化模型设计和田间验证,系统地解决了自动穗粒检测中的关键技术挑战,为智能农业发展提供了重要的实用价值。