García-Barrios Guillermo, Robles-Zazueta Carlos A, Montesinos-López Abelardo, Montesinos-López Osval A, Reynolds Matthew P, Dreisigacker Susanne, Carrillo-Salazar José A, Acevedo-Siaca Liana G, Guerra-Lugo Margarita, Thompson Gilberto, Pecina-Martínez José A, Crossa José
Graduate Program in Genetic Resources and Productivity, Colegio de Postgraduados, Texcoco, Estado de Mexico, Mexico.
International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado de Mexico, Mexico.
Plant Genome. 2025 Sep;18(3):e70110. doi: 10.1002/tpg2.70110.
Genomic selection is an extension of marker-assisted selection by leveraging thousands of molecular markers distributed across the genome to capture the maximum possible proportion of the genetic variance underlying complex traits. In this study, genomic prediction models were developed by integrating phenological, physiological, and high-throughput phenotyping traits to predict grain yield in bread wheat (Triticum aestivum L.) under three environmental conditions: irrigation, drought stress, and terminal heat stress. Model performance was evaluated using both five-fold cross-validation and leave-one-environment-out (LOEO) schemes. Under five-fold cross-validation, the model incorporating vegetation indices derived from spectral datasets from the grain-filling phase achieved the highest accuracy. In LOEO validation, the model that included days to heading performed best under irrigation, whereas under drought stress, the model utilizing vegetation indices from the vegetative stage showed the highest accuracy. Under terminal heat stress, three models performed best: one incorporating genotype by environment interaction, one using vegetation indices during the vegetative stage, and one integrating spectral reflectance data from both the vegetative and grain-filling phases. Although incorporating multiple covariates can improve prediction accuracy or reduce the normalized root mean square error, using an extended model with all available covariates is not recommended due to the marginal predictive accuracy gains, increases in phenotyping, costs and complexity of data collection analysis. Overall, our findings show the importance of tailored phenomic inputs to specific environmental contexts to optimize genomic prediction of wheat yield.
基因组选择是标记辅助选择的一种扩展,它利用分布在基因组中的数千个分子标记,以捕获复杂性状潜在遗传变异的最大可能比例。在本研究中,通过整合物候、生理和高通量表型性状,开发了基因组预测模型,以预测面包小麦(Triticum aestivum L.)在三种环境条件下的籽粒产量:灌溉、干旱胁迫和拔节期高温胁迫。使用五折交叉验证和留一环境法(LOEO)方案评估模型性能。在五折交叉验证中,纳入灌浆期光谱数据集衍生植被指数的模型获得了最高精度。在LOEO验证中,包含抽穗天数的模型在灌溉条件下表现最佳,而在干旱胁迫下,利用营养生长期植被指数的模型显示出最高精度。在拔节期高温胁迫下,三个模型表现最佳:一个纳入基因型与环境互作,一个使用营养生长期的植被指数,一个整合营养期和灌浆期的光谱反射数据。虽然纳入多个协变量可以提高预测精度或降低归一化均方根误差,但由于边际预测精度提高、表型分析增加、成本上升以及数据收集分析的复杂性,不建议使用包含所有可用协变量的扩展模型。总体而言,我们的研究结果表明,针对特定环境背景定制表型组输入对于优化小麦产量的基因组预测至关重要。