系统性红斑狼疮和抗磷脂综合征的药物联合推荐模型
Drug Combination Recommendation Model for Systemic Lupus Erythematosus and Antiphospholipid Syndrome.
作者信息
Wang Ling, Zhang Zhengyang, Zhang Ziheng, Zhou Tie Hua, Ryu Keun Ho
机构信息
Department of Computer Science and Technology, School of Computer Science, Northeast Electric Power University, Jilin City 132013, China.
Data Science Laboratory, Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City 700000, Vietnam.
出版信息
Pharmaceuticals (Basel). 2025 Aug 19;18(8):1224. doi: 10.3390/ph18081224.
: Systemic Lupus Erythematosus (SLE) and Antiphospholipid Syndrome (APS) are two common autoimmune disorders for which the choice of drug regimen is clinically crucial. However, due to drug-drug interactions and individual differences, the therapeutic process faces greater risks. : In this study, we propose a drug recommendation model that combines drug combination frequency, risk assessment, and genetic interaction information with the aim of providing personalized, low-risk treatment options for patients with lupus erythematosus and antiphospholipid syndrome. We extracted drug combination frequencies and drug-gene interaction information from data sources, such as the MIMIC-III clinical database, Drug Bank, and Gene Expression Omnibus. The model comprehensively evaluates the frequency of drug combinations, the risk level, and the gene interaction information through a greedy algorithm to recommend the optimal drug alternatives. : The experimental results show that the model is able to effectively reduce the potential risk between drugs while ensuring the drug treatment effect. In addition, the performance evaluation of the drug recommendation model shows that the model performs well under different drug combinations and clinical scenarios, and can provide clinicians with effective drug substitution suggestions. : This study provides an important theoretical basis and technical support for advancing the realization of personalized therapy and precision medicine.
系统性红斑狼疮(SLE)和抗磷脂综合征(APS)是两种常见的自身免疫性疾病,药物治疗方案的选择在临床上至关重要。然而,由于药物相互作用和个体差异,治疗过程面临更大风险。在本研究中,我们提出了一种药物推荐模型,该模型结合了药物联合使用频率、风险评估和基因相互作用信息,旨在为红斑狼疮和抗磷脂综合征患者提供个性化、低风险的治疗方案。我们从诸如MIMIC-III临床数据库、药物银行和基因表达综合数据库等数据源中提取药物联合使用频率和药物-基因相互作用信息。该模型通过贪心算法综合评估药物联合使用频率、风险水平和基因相互作用信息,以推荐最佳药物替代方案。实验结果表明,该模型能够在确保药物治疗效果的同时有效降低药物之间的潜在风险。此外,药物推荐模型的性能评估表明,该模型在不同的药物联合使用和临床场景下表现良好,并可为临床医生提供有效的药物替代建议。本研究为推进个性化治疗和精准医学的实现提供了重要的理论基础和技术支持。