Suppr超能文献

利用机器学习方法对多种抗原和制剂进行流感疫苗的反相色谱分析进展

Advancing Reversed-Phase Chromatography Analytics of Influenza Vaccines Using Machine Learning Approaches on a Diverse Range of Antigens and Formulations.

作者信息

Lorbetskie Barry, Manouchehri Narges, Girard Michel, Sauvé Simon, Lu Huixin

机构信息

Center for Oncology, Radiopharmaceuticals and Research, Biologic and Radiopharmaceutical Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada.

Science Strategy and Services Innovation, Chief Technology Office Branch, Shared Services Canada, Montreal, QC H9P 1J3, Canada.

出版信息

Vaccines (Basel). 2025 Jul 31;13(8):820. doi: 10.3390/vaccines13080820.

Abstract

One concern in the yearly re-formulation of influenza vaccines is the time-consuming manufacturing of vaccine potency reagents, particularly for emergency responses. The continuous evaluation of modern techniques such as reversed-phase (RP) chromatography is an asset for streamlining this process. One challenge with RP methods, however, is the need to re-optimize methods for antigens that show poor separation, which can be highly dependent on analyst experience and available data. In this study, we leveraged a large RP dataset of influenza antigens to explore machine learning (ML) approaches of classifying challenging separations for computer-assisted method re-optimization across years, products, and analysts. : To address recurring chromatographic issues-such as poor resolution, strain co-elution, and signal absence-we applied data augmentation techniques to correct class imbalance and trained multiple supervised ML classifiers to distinguish between these peak profiles. : With data augmentation, several ML models demonstrated promising accuracy in classifying chromatographic profiles according to the provided labels. These models effectively distinguished patterns indicative of separation issues in real-world data. Our findings highlight the potential of ML as a computer assisted tool in the evaluation of vaccine quality, offering a scalable and objective approach to chromatogram classification. By reducing reliance on manual interpretation, ML can expedite the optimization of analytical methods, which is particularly needed for rapid responses. Future research involving larger, inter-laboratory datasets will further elucidate the utility of ML in vaccine analysis.

摘要

流感疫苗每年重新配方时的一个问题是疫苗效力试剂的生产耗时,尤其是在应急情况下。对诸如反相(RP)色谱等现代技术进行持续评估有助于简化这一过程。然而,RP方法面临的一个挑战是,对于分离效果不佳的抗原,需要重新优化方法,而这可能高度依赖分析人员的经验和现有数据。在本研究中,我们利用一个大型流感抗原RP数据集,探索机器学习(ML)方法,以对具有挑战性的分离进行分类,从而实现跨年份、产品和分析人员的计算机辅助方法重新优化。为了解决反复出现的色谱问题,如分辨率差、毒株共洗脱和信号缺失,我们应用数据增强技术来纠正类别不平衡,并训练多个监督式ML分类器来区分这些峰型。通过数据增强,几个ML模型在根据提供的标签对色谱图进行分类方面显示出了可观的准确率。这些模型有效地辨别了现实世界数据中表明分离问题的模式。我们的研究结果凸显了ML作为一种计算机辅助工具在疫苗质量评估中的潜力,为色谱图分类提供了一种可扩展且客观的方法。通过减少对人工解读的依赖,ML可以加快分析方法的优化,这在快速响应中尤为必要。涉及更大规模的实验室间数据集的未来研究将进一步阐明ML在疫苗分析中的效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7ec/12390064/e34af3cc977c/vaccines-13-00820-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验