Suppr超能文献

外膜与肽聚糖相互作用的破坏增强了产O抗原菌的胆盐抗性。

Disruptions in outer membrane-peptidoglycan interactions enhance bile salt resistance in O-antigen-producing .

作者信息

Qin Jilong, Hong Yaoqin, Vollmer Waldemar, Morona Renato, Totsika Makrina

机构信息

Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia.

Max Planck Queensland Centre, Queensland University of Technology, Brisbane, Queensland, Australia.

出版信息

mBio. 2025 Aug 28:e0218425. doi: 10.1128/mbio.02184-25.

Abstract

Bile salts (BS) are antimicrobials that disrupt bacterial cell membranes and induce oxidative stress. The gut bacterium is naturally resistant to BS, including the model strain K12 MG1655 that produces a lipopolysaccharide (LPS) without O-antigen (OAg) on the cell surface. Paradoxically, we have previously shown that restoring a wild-type like LPS with attached OAg (MG1655-S) sensitizes K12 to exogenous BS. In this study, we investigate this phenomenon. We show that mutations causing truncation of the LPS core oligosaccharide render MG1655-S strains even more susceptible to BS compared to MG1655. These mutants phenocopy a K-12 MG1655-S Δ mutant, which is defective in OAg ligase, primarily due to periplasmic accumulation of the unligated lipid-linked UndPP-OAg. Through the characterization of BS-resistant suppressor mutants of MG1655-S Δ, we identify key genetic disruptions involved in resistance. Notably, we observed the highest BS resistance in strains with a weaker connection between the outer membrane (OM) and peptidoglycan (PG), including strains lacking the major OM-anchored, PG-binding proteins OmpA or Lpp. Expressing versions of OmpA and Lpp that lack PG-binding capacity also enhanced the BS resistance. Our data suggest that BS-induced stress in OAg-producing is due to the spatial constraints between OM and PG and that mutations disrupting OM-PG interactions alleviate this stress, thereby enhancing BS resistance. These findings provide new insights into a major challenge faces in the gut environment, where it needs to produce OAg for stable colonization and immune evasion while resisting the antimicrobial activity of BS.IMPORTANCEEnteric bacteria residing in the human gut must withstand host-derived antimicrobial bile salts, but resistance mechanisms are not fully elucidated. In this study, we investigate bile salt resistance mechanisms in O-antigen (OAg)-producing K-12. We show that the accumulation of carrier lipid-linked OAg in the periplasm of strains with truncated lipopolysaccharide (LPS) core oligosaccharide or defects in OAg ligase can sensitize more to bile salt, unless the physical links between outer membrane and peptidoglycan are disrupted, highlighting that bile salt-induced stress is attributed to spatial constraints between the outer membrane and peptidoglycan layer. Our work uncovers a previously unappreciated envelope stress response mechanism in , where reducing outer membrane-peptidoglycan connectivity mitigates bile salt-induced damage arising from OAg production. These findings reshape our understanding of how physical architecture and biosynthetic intermediates intersect to influence bacterial survival in hostile environments.

摘要

胆盐(BS)是一种抗菌物质,可破坏细菌细胞膜并诱导氧化应激。肠道细菌对BS天然具有抗性,包括模型菌株K12 MG1655,该菌株在细胞表面产生一种不含O抗原(OAg)的脂多糖(LPS)。矛盾的是,我们之前已经表明,恢复带有连接OAg的野生型LPS(MG1655-S)会使K12对外源BS敏感。在本研究中,我们对这一现象进行了调查。我们发现,导致LPS核心寡糖截断的突变使MG1655-S菌株比MG1655对BS更敏感。这些突变体模拟了K-12 MG1655-S Δ突变体,该突变体在OAg连接酶方面存在缺陷,主要是由于未连接的脂质连接的UndPP-OAg在周质中积累。通过对MG1655-S Δ的BS抗性抑制突变体的表征,我们确定了参与抗性的关键基因破坏。值得注意的是,我们观察到外膜(OM)和肽聚糖(PG)之间连接较弱的菌株具有最高的BS抗性,包括缺乏主要的OM锚定、PG结合蛋白OmpA或Lpp的菌株。表达缺乏PG结合能力的OmpA和Lpp变体也增强了BS抗性。我们的数据表明,在产生OAg的细菌中,BS诱导的应激是由于OM和PG之间的空间限制,而破坏OM-PG相互作用的突变减轻了这种应激,从而增强了BS抗性。这些发现为细菌在肠道环境中面临的一个重大挑战提供了新的见解,在肠道环境中,细菌需要产生OAg以实现稳定定殖和逃避免疫,同时抵抗BS的抗菌活性。

重要性

居住在人类肠道中的肠道细菌必须抵御宿主来源的抗菌胆盐,但抗性机制尚未完全阐明。在本研究中,我们调查了产生O抗原(OAg)的K-12的胆盐抗性机制。我们表明,在脂多糖(LPS)核心寡糖截断或OAg连接酶存在缺陷的菌株的周质中,载体脂质连接的OAg的积累会使细菌对胆盐更敏感,除非外膜和肽聚糖之间的物理连接被破坏,这突出表明胆盐诱导的应激归因于外膜和肽聚糖层之间的空间限制。我们 的工作揭示了细菌中一种以前未被认识的包膜应激反应机制,即减少外膜-肽聚糖的连接性可减轻由OAg产生引起的胆盐诱导的损伤。这些发现重塑了我们对物理结构和生物合成中间体如何相互作用以影响细菌在恶劣环境中生存的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验