Zeng Ying-Yue, Lin Hui-Yin, Yuan Si-Chen, Peng Xuan-Xian, Li Hui
State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.
Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
mSystems. 2025 Aug 28:e0079425. doi: 10.1128/msystems.00794-25.
The antibiotic susceptibility/resistance of bacteria is influenced by their metabolic states. In tobramycin-resistant (LTB4-R), a dynamic metabolic state is observed, characterized by a general reduction in most metabolites as the minimum inhibitory concentration increases. Among these, aspartate downregulation emerges as the most critical biomarker. Exogenous aspartate enhances the efficacy of tobramycin, enabling it to effectively kill both lab-evolved and clinically isolated multidrug-resistant (MDR) , as demonstrated in an animal model. Aspartate increases intracellular tobramycin levels in a concentration- and time-dependent manner by promoting drug uptake. Metabolic reprogramming analysis of LTB4-R and clinically isolated MDR strain WY28 reveals that exogenous aspartate restores downregulated metabolites, primarily enhancing alanine, aspartate, and glutamate metabolism; the pyruvate cycle; and glycine, serine, and threonine metabolism. These changes elevate the proton motive force and membrane permeability, thereby increasing tobramycin uptake. The resulting intracellular drug concentration surpasses the bactericidal threshold, effectively overcoming resistance in both LTB4-R and clinical MDR . These findings identify aspartate as a potent metabolic reprogramming agent that potentiates aminoglycosides by boosting intracellular drug accumulation, offering a strategy to combat antibiotic-resistant .IMPORTANCE is a significant pathogen that causes edwardsiellosis in aquaculture, resulting in substantial economic losses while also posing a global public health threat. The increasing prevalence of antibiotic-resistant strains has further exacerbated this challenge. The present study used a metabolic state-reprogramming approach to identify an ideal biomarker as an antibiotic adjuvant to increase conventional antibiotics that are already resistant. Exogenous aspartate most effectively potentiated tobramycin to lab-evolved and clinical isolated MDR in and in models (fish and mice). Mechanistically, aspartate enhanced tobramycin uptake in MDR by overcoming efflux pump activity. This effect was mediated through aspartate-induced activation of the pyruvate cycle, which increased the proton motive force via NADH generation and enhanced membrane permeability. Our findings demonstrate that the aspartate-tobramycin combination represents a promising therapeutic strategy against MDR infections.
细菌的抗生素敏感性/耐药性受其代谢状态的影响。在耐妥布霉素(LTB4-R)菌株中,观察到一种动态代谢状态,其特征是随着最低抑菌浓度的增加,大多数代谢物普遍减少。其中,天冬氨酸下调成为最关键的生物标志物。外源性天冬氨酸可增强妥布霉素的疗效,使其能够有效杀死实验室进化的和临床分离的多重耐药(MDR)菌株,这在动物模型中得到了证实。天冬氨酸通过促进药物摄取,以浓度和时间依赖性方式增加细胞内妥布霉素水平。对LTB4-R和临床分离的MDR菌株WY28进行的代谢重编程分析表明,外源性天冬氨酸可恢复下调的代谢物,主要增强丙氨酸、天冬氨酸和谷氨酸代谢;丙酮酸循环;以及甘氨酸、丝氨酸和苏氨酸代谢。这些变化提高了质子动力和膜通透性,从而增加了妥布霉素的摄取。由此产生的细胞内药物浓度超过杀菌阈值,有效克服了LTB4-R和临床MDR菌株的耐药性。这些发现确定天冬氨酸是一种有效的代谢重编程剂,通过提高细胞内药物积累来增强氨基糖苷类药物的作用,为对抗抗生素耐药性提供了一种策略。重要性:[病原体名称]是一种重要病原体,可在水产养殖中引起爱德华氏菌病,导致重大经济损失,同时也构成全球公共卫生威胁。抗生素耐药菌株的日益流行进一步加剧了这一挑战。本研究采用代谢状态重编程方法,确定一种理想的生物标志物作为抗生素佐剂,以增强对已产生耐药性的传统抗生素的作用。外源性天冬氨酸在鱼类和小鼠模型中最有效地增强了妥布霉素对实验室进化的和临床分离的MDR菌株的作用。从机制上讲,天冬氨酸通过克服外排泵活性增强了MDR菌株中妥布霉素的摄取。这种作用是通过天冬氨酸诱导的丙酮酸循环激活介导的,丙酮酸循环通过生成NADH增加质子动力并增强膜通透性。我们的研究结果表明,天冬氨酸-妥布霉素组合代表了一种有前景的治疗MDR感染的策略。