Chen Heyu, Bittner Dominik, Yin Wen, Thompson Liam, Campbell Grant, Hastings Astley, Abdalla Mohamed
Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, 23 St. Machar Drive, Cruickshank, Aberdeen, AB24 3UU, UK.
Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, 23 St. Machar Drive, Cruickshank, Aberdeen, AB24 3UU, UK.
Environ Pollut. 2025 Nov 15;385:127040. doi: 10.1016/j.envpol.2025.127040. Epub 2025 Aug 26.
Permafrost wetlands are critical and vulnerable components of northern ecosystems, with their methane (CH) emissions representing a major uncertainty in Earth system models. Previous syntheses have disagreed on how permafrost continuity modulates CH fluxes, leaving a blind spot in climate projections. We hypothesize that degradation of permafrost continuity from continuous to discontinuous to sporadic creates a gradient of environmental conditions that drives an exponential shift in CH emissions. To test this, we synthesized 153 growing-season CH flux observations from 40 global permafrost wetland studies. Our analysis reveals a clear emission gradient: continuous, discontinuous, and sporadic permafrost wetlands exhibited median CH fluxes of 0.09, 0.24, and 4.73 mg CH m h, respectively. Water-table depth (WT) emerged as the dominant predictor of CH flux (XGBoost RMSE = 0.78 mg CH m h, R = 0.59), with a nonlinear threshold at ∼-10 cm. Fluxes were negligible below this depth but increased markedly above it, indicating a hydrological tipping point. Structural equation modelling showed that the composite permafrost factor (β = 0.26) and hydrological conditions (β = 0.26) jointly explained ≈0.37 of the total R = 0.48. Environmental analyses highlighted systematic shifts across categories: sporadic sites had the shallowest WT (-4.73 cm) and deepest active layers (115.3 cm), conditions that expand methanogenic soil volumes while compressing oxidation zones. Continuous sites showed higher soil bulk density and pH, whereas sporadic sites accumulated more organic matter. These biophysical changes, coupled with vegetation turnover, further modulated CH dynamics: tree-dominated sites suppressed emissions, while sedge-dominated zones enhanced them under wetter conditions. Together, our findings demonstrate a cascading, nonlinear relationship linking permafrost degradation, thaw depth, hydrology, microbial processes, and vegetation to CH flux. This mechanistic understanding underscores the need to integrate permafrost-hydrology-microbe-vegetation feedback into models to reduce uncertainty in Arctic methane-climate projections.
多年冻土湿地是北方生态系统的关键且脆弱的组成部分,其甲烷(CH)排放是地球系统模型中的一个主要不确定性因素。以往的综合研究对于多年冻土连续性如何调节CH通量存在分歧,这在气候预测中留下了一个盲点。我们假设,多年冻土连续性从连续到不连续再到零星分布的退化会产生一系列环境条件梯度,从而导致CH排放呈指数级变化。为了验证这一点,我们综合了来自40项全球多年冻土湿地研究的153个生长季CH通量观测数据。我们的分析揭示了一个明显的排放梯度:连续、不连续和零星分布的多年冻土湿地的CH通量中位数分别为0.09、0.24和4.73毫克CH每平方米每小时。地下水位深度(WT)成为CH通量的主要预测因子(XGBoost模型的均方根误差 = 0.78毫克CH每平方米每小时,R = 0.59),在约-10厘米处存在一个非线性阈值。在该深度以下通量可忽略不计,但在该深度以上则显著增加,这表明存在一个水文临界点。结构方程模型表明,综合多年冻土因子(β = 0.26)和水文条件(β = 0.26)共同解释了总R = 0.48中的约0.37。环境分析突出了不同类别之间的系统性变化:零星分布的地点地下水位最浅(-4.73厘米),活动层最深(115.3厘米),这些条件扩大了产甲烷土壤体积,同时压缩了氧化区。连续分布的地点土壤容重和pH值较高,而零星分布的地点积累了更多的有机质。这些生物物理变化,再加上植被更替,进一步调节了CH动态:以树木为主的地点抑制排放,而以莎草为主的区域在更湿润的条件下增强排放。总之,我们的研究结果表明,多年冻土退化、融化深度、水文、微生物过程和植被与CH通量之间存在级联的非线性关系。这种机理理解强调了将多年冻土 - 水文 - 微生物 - 植被反馈纳入模型的必要性,以减少北极甲烷 - 气候预测中的不确定性。