Suppr超能文献

一种用于在进化约束下揭示转移性癌症和病毒爆发历史的图同态方法。

A graph homomorphism approach for unraveling histories of metastatic cancers and viral outbreaks under evolutionary constraints.

作者信息

Kuzmin Kiril, Schmidt Henri, Kafi Kang Maryam, Snir Sagi, Raphael Benjamin J, Skums Pavel

机构信息

Department of Computer Science, Georgia State University, Atlanta, GA, USA.

Department of Computer Science, Princeton University, Princeton, NJ, USA.

出版信息

Nat Commun. 2025 Aug 28;16(1):8027. doi: 10.1038/s41467-025-63411-4.

Abstract

Viral infections and cancers are driven by evolution of populations of highly mutable genomic variants. A key evolutionary process in these populations is their migration or spread via transmission or metastasis. Understanding this process is crucial for research, clinical practice, and public health, yet tracing spread pathways is challenging. Phylogenetics offers the main methodological framework for this problem, with challenges including determining the conditions when a phylogenetic tree reflects the underlying migration tree structure, and balancing computational efficiency, flexibility, and biological realism. We tackle these challenges using the powerful machinery of graph homomorphisms, a mathematical concept describing how one graph can be mapped onto another while preserving its structure. We focus on metastatic migrations and viral host-to-host transmissions in outbreak settings. We investigate how structural constraints on migration patterns influence the relationship between phylogenetic and migration trees and propose algorithms to evaluate trees consistency under varying conditions. Leveraging our findings, we introduce a framework for inferring transmission/migration trees by sampling potential solutions from a prior random tree distribution and identifying a subsample consistent with a given phylogeny. By varying the prior distribution, this approach generalizes several existing models, offering a versatile strategy applicable in diverse settings.

摘要

病毒感染和癌症是由高度可变的基因组变异群体的进化驱动的。这些群体中的一个关键进化过程是它们通过传播或转移进行迁移或扩散。了解这一过程对于研究、临床实践和公共卫生至关重要,但追踪传播途径具有挑战性。系统发育学为此问题提供了主要的方法框架,其挑战包括确定系统发育树何时反映潜在的迁移树结构,以及平衡计算效率、灵活性和生物学真实性。我们使用图同态的强大工具来应对这些挑战,图同态是一个数学概念,描述了一个图如何在保持其结构的同时映射到另一个图上。我们专注于爆发环境中的转移迁移和病毒宿主间传播。我们研究迁移模式的结构约束如何影响系统发育树和迁移树之间的关系,并提出算法来评估不同条件下树的一致性。利用我们的发现,我们引入了一个框架,通过从先前随机树分布中采样潜在解决方案并识别与给定系统发育一致的子样本,来推断传播/迁移树。通过改变先验分布,这种方法推广了几种现有模型,提供了一种适用于各种环境的通用策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbd7/12394457/12604fa4f383/41467_2025_63411_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验