Suppr超能文献

主干道行人碰撞事故的行为和心理决定因素:基于随机参数模型的证据

Behavioral and psychological determinants of pedestrian collisions on arterial roads with evidence from random parameter models.

作者信息

Hossain Ahmed, Das Subasish, Jafari Monire, Starewich Michael, Chakraborty Rohit, Kutela Boniphace

机构信息

Department of Civil Engineering, Texas State University, San Marcos, TX, 78666, USA.

Department of Mathematics, Texas State University, San Marcos, TX, 78666, USA.

出版信息

Sci Rep. 2025 Aug 28;15(1):31684. doi: 10.1038/s41598-025-16762-3.

Abstract

Arterial roads, while comprising a small percentage of total roadway mileage in the U.S., contribute disproportionately to pedestrian fatalities. Focusing on the behavioral and psychological dimensions of crash risk, this study analyzes 1722 pedestrian crashes on principal arterials and 1614 on minor arterials in Louisiana from 2017 to 2021. A Random Parameter Multinomial Logit Model with Heterogeneity in Means and Variance captures the hidden variation in how individual behaviors and situational contexts affect injury outcomes. Results indicate that perceptual challenges (dark conditions without street lighting), driver decision errors (lane departures), and alcohol‑impaired judgment are strong predictors of severe or fatal crashes. Marginal effects show elevated risk when pedestrians or drivers navigate low‑visibility environments, single‑vehicle settings that isolate responsibility, and scenarios involving Black pedestrians who may face systemic exposure and behavioral adaptation under stress. Conversely, proactive behaviors such as attentive movement before impact, lane keeping, and navigating mixed-use areas with higher driver expectancy can reduce the likelihood of severe injury. Psychological and situational determinants differ by arterial class: on principal arterials, perceptual load and alcohol impairment dominate, whereas on minor arterials, risk‑taking maneuvers like midblock crossings and expectancy violations shape outcomes. These insights underscore the need for Safe System Approach (SSA) interventions that couple engineering fixes (street lighting, access control, enhanced midblock crossings) with behaviorally informed strategies such as targeted impaired‑driving enforcement, perception‑based educational campaigns, and context‑specific outreach for at‑risk demographic groups.

摘要

干线道路在美国道路总里程中所占比例虽小,但在行人死亡事故中所占比例却过高。本研究聚焦碰撞风险的行为和心理维度,分析了2017年至2021年路易斯安那州主要干线道路上的1722起行人碰撞事故以及次要干线道路上的1614起事故。一个均值和方差具有异质性的随机参数多项Logit模型捕捉了个体行为和情境背景如何影响伤害结果的隐藏变化。结果表明,感知挑战(无路灯照明的黑暗条件)、驾驶员决策失误(车道偏离)和酒精影响下的判断力是严重或致命碰撞事故的有力预测因素。边际效应表明,当行人或驾驶员在低能见度环境、责任难以界定的单车事故场景以及涉及黑人行人且可能在压力下面临系统性暴露和行为适应的场景中通行时,风险会升高。相反,诸如碰撞前的谨慎行动、保持在车道内以及在驾驶员预期较高的混合用途区域通行等积极行为可以降低重伤的可能性。心理和情境决定因素因干线道路类别而异:在主要干线道路上,感知负荷和酒精影响占主导,而在次要干线道路上,诸如在街区中间横穿马路和违反预期等冒险行为决定了事故结果。这些见解强调了安全系统方法(SSA)干预措施的必要性,这些措施应将工程修复措施(路灯照明、出入控制、改善街区中间横穿马路设施)与基于行为的策略相结合,如针对性的酒驾执法、基于感知的教育活动以及针对高危人群的特定情境宣传。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be9d/12394426/f05f6dd7b26c/41598_2025_16762_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验