使用深度学习框架进行动作评估和个性化训练的人工智能驱动的太极拳掌握。
AI-Driven Tai Chi mastery using deep learning framework for movement assessment and personalized training.
作者信息
Zhao Xun
机构信息
College of Physical Education, Baicheng Normal University, Baicheng, Jilin, 137000, China.
出版信息
Sci Rep. 2025 Aug 28;15(1):31700. doi: 10.1038/s41598-025-17187-8.
This paper presents a novel system for optimizing Tai Chi movement training using computer vision and deep learning technologies. We developed a comprehensive framework incorporating multi-view pose estimation, temporal feature extraction, and real-time movement assessment to address the challenges of traditional Tai Chi instruction. The system employs spatial-temporal graph convolutional networks enhanced with attention mechanisms for accurate movement evaluation, combined with personalized feedback generation through augmented reality and multi-modal interfaces. Validation experiments with 120 participants across different skill levels demonstrated 42% faster skill acquisition and 28.5% greater improvement in movement quality compared to traditional training methods. The system achieved 92.8% accuracy in error detection and maintained high user satisfaction ratings across all experience levels. Our approach successfully bridges ancient wisdom with modern technology, providing scalable, standardized instruction while preserving the cultural essence of Tai Chi practice.
本文提出了一种利用计算机视觉和深度学习技术优化太极拳运动训练的新型系统。我们开发了一个综合框架,融合了多视图姿态估计、时间特征提取和实时运动评估,以应对传统太极拳教学的挑战。该系统采用了通过注意力机制增强的时空图卷积网络进行准确的运动评估,并结合通过增强现实和多模态界面生成个性化反馈。对120名不同技能水平参与者进行的验证实验表明,与传统训练方法相比,技能习得速度提高了42%,运动质量提高了28.5%。该系统在错误检测方面的准确率达到92.8%,并且在所有经验水平上都保持了较高的用户满意度评分。我们的方法成功地将古老智慧与现代技术相结合,在保留太极拳练习文化精髓的同时,提供了可扩展、标准化的教学。
相似文献
Cochrane Database Syst Rev. 2014-4-9
Cochrane Database Syst Rev. 2016-6-7
本文引用的文献
Front Neurorobot. 2022-5-20
IEEE Trans Pattern Anal Mach Intell. 2023-2
Sensors (Basel). 2019-9-24
IEEE Trans Pattern Anal Mach Intell. 2021-1
IEEE Trans Pattern Anal Mach Intell. 2020-10
Neural Netw. 2019-2-6