Hadipour Maryam, Haseli Soroush
Faculty of Physics, Urmia University of Technology, Urmia, Iran.
School of Quantum Physics and Matter, Institute for Research in Fundamental Sciences (IPM), P.O. 19395-5531, Tehran, Iran.
Sci Rep. 2025 Aug 28;15(1):31740. doi: 10.1038/s41598-025-17601-1.
This study investigates the thermodynamic behavior of a two-qubit quantum system, where each qubit is coupled to an independent thermal reservoir, either bosonic or fermionic. Using a master equation approach, we analyze both steady-state and time-dependent ergotropy to understand how different reservoir statistics affect work extraction. In bosonic environments, ergotropy consistently declines with increasing temperature due to thermal noise. In contrast, fermionic reservoirs exhibit more complex behavior, with ergotropy enhanced by particle transport under non-equilibrium conditions. Our results reveal a threshold-like sensitivity to the chemical potential configuration, leading to qualitatively distinct regimes of energy storage performance. Time-resolved analyses show that the system's approach to steady state varies depending on the type of reservoir and the coupling strength between qubits. These insights highlight how carefully engineered reservoir properties and non-equilibrium driving can be leveraged to optimize quantum battery performance.
本研究考察了一个双量子比特量子系统的热力学行为,其中每个量子比特都与一个独立的热库耦合,该热库可以是玻色型或费米型。我们使用主方程方法,分析了稳态和含时的熵功率,以了解不同的热库统计特性如何影响功的提取。在玻色型环境中,由于热噪声,熵功率随温度升高而持续下降。相比之下,费米型热库表现出更复杂的行为,在非平衡条件下,粒子输运会增强熵功率。我们的结果揭示了对化学势配置的类似阈值的敏感性,导致储能性能在性质上有明显不同的状态。时间分辨分析表明,系统达到稳态的方式取决于热库的类型以及量子比特之间的耦合强度。这些见解突出了如何利用精心设计的热库特性和非平衡驱动来优化量子电池性能。