Suppr超能文献

细胞间信号传导强化单细胞水平的表型转变,并促进异质性癌细胞群体的稳固再平衡。

Intercellular signaling reinforces single-cell level phenotypic transitions and facilitates robust re-equilibrium of heterogeneous cancer cell populations.

作者信息

Lopez Daniel, Tyson Darren R, Hong Tian

机构信息

Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN, 37916, USA.

Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, 27710, USA.

出版信息

Cell Commun Signal. 2025 Aug 28;23(1):386. doi: 10.1186/s12964-025-02405-7.

Abstract

BACKGROUND

Cancer cells within tumors exhibit a wide range of phenotypic states driven by non-genetic mechanisms, such as epithelial-to-mesenchymal transition (EMT), in addition to extensively studied genetic alterations. Conversions among cancer cell states can result in intratumoral heterogeneity which contributes to metastasis and development of drug resistance. However, mechanisms underlying the initiation and/or maintenance of such phenotypic plasticity are poorly understood. In particular, the role of intercellular communications in phenotypic plasticity remains elusive.

METHODS

In this study, we employ a multiscale inference-based approach that integrates single-cell transcriptomic data to predict phenotypic changes and tumor population dynamics. Our computational framework combines ligand-receptor interaction inference (CellChat), transcription factor activity estimation (decoupleR), and causal signaling network reconstruction (CORNETO) to analyze single-cell RNA sequencing (scRNA-seq) data and investigate how intercellular interactions influence cancer cell phenotypes, with a particular focus on EMT-related gene programs. We further use mathematical models based on ordinary differential equations, informed by network inferences, to examine how intercellular communication shapes phenotypic dynamics at the population level from a dynamical systems perspective.

RESULTS

Our inference approach reveals that signaling interactions between cancerous cells in small cell lung cancer (SCLC) result in the reinforcement of the phenotypic transition in single cells and the maintenance of population-level intratumoral heterogeneity. Additionally, we find a recurring signaling pattern across multiple types of cancer in which the mesenchymal-like subtypes utilize signals from other subtypes to support its new phenotype, further promoting the intratumoral heterogeneity. Our models show that inter-subtype communication both accelerates the development of heterogeneous tumor populations and confers robustness to their steady state phenotypic compositions.

CONCLUSIONS

Our work highlights the critical role of intercellular signaling in sustaining intratumoral heterogeneity, and our approach of computational analysis of scRNA-seq data can infer inter- and intra-cellular signaling networks in a holistic manner.

摘要

背景

肿瘤内的癌细胞除了存在广泛研究的基因改变外,还表现出由非遗传机制驱动的多种表型状态,如上皮-间质转化(EMT)。癌细胞状态之间的转变可导致肿瘤内异质性,这有助于转移和耐药性的发展。然而,这种表型可塑性的起始和/或维持机制仍知之甚少。特别是,细胞间通讯在表型可塑性中的作用仍然难以捉摸。

方法

在本研究中,我们采用基于多尺度推断的方法,整合单细胞转录组数据来预测表型变化和肿瘤群体动态。我们的计算框架结合了配体-受体相互作用推断(CellChat)、转录因子活性估计(decoupleR)和因果信号网络重建(CORNETO),以分析单细胞RNA测序(scRNA-seq)数据,并研究细胞间相互作用如何影响癌细胞表型,特别关注与EMT相关的基因程序。我们进一步使用基于常微分方程的数学模型,以网络推断为依据,从动态系统的角度研究细胞间通讯如何在群体水平塑造表型动态。

结果

我们的推断方法表明,小细胞肺癌(SCLC)中癌细胞之间的信号相互作用导致单细胞表型转变的增强和群体水平肿瘤内异质性的维持。此外,我们在多种癌症类型中发现了一种反复出现的信号模式,即间充质样亚型利用来自其他亚型的信号来支持其新表型,进一步促进肿瘤内异质性。我们的模型表明,亚型间通讯既加速了异质性肿瘤群体的发展,又赋予其稳态表型组成以稳健性。

结论

我们的工作突出了细胞间信号在维持肿瘤内异质性中的关键作用,并且我们对scRNA-seq数据的计算分析方法能够以整体方式推断细胞间和细胞内信号网络。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验