Nweke Martins, Pillay Julian David, Musekiwa Alfred, Ibeneme Sam Chidi
Global Health and Sustainability, Faculty of Health Sciences, Durban University of Technology, Durban, South Africa.
Department of Physiotherapy, Faculty of Healthcre Sciences, University of Pretoria, Pretoria, South Africa.
JMIR Res Protoc. 2025 Aug 29;14:e63783. doi: 10.2196/63783.
Premature death in people with HIV in sub-Saharan Africa (SSA) is highly preventable. However, the lack of inclusive, cost-effective prognostic tools remains challenging. Most prognostic tools have been developed in high-income economies. The distinct cultural dynamics in HIV-related death epidemiology makes them unsuitable for the region. Additionally, the models lack systematic stratification of death determinants based on clinical relevance, and some included factors are too expensive for people with HIV in SSA.
We aimed to create a tailored predictive model that considers the unique context of SSA, including cultural dynamics, cost-effectiveness, and clinical relevance.
This is a 2-phase study. In the development phase, we will use a combination of evidence synthesis, namely meta-analysis, application epidemiology, biostatistical, and economic paradigms, to develop a prognostic model for people living with HIV in SSA. The Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) protocol will be followed in the structuring of the meta-analysis. From their creation to the present, we will search African journals (Sabinet) and the PubMed, Scopus, MEDLINE, Academic Search Complete, Directory of Open Access Repository, Cochrane Library, Web of Science, EMBASE, and Cumulative Index for Nursing and Allied Health Literature databases. Only cohort studies with moderate to high quality will be included. The primary outcome variables include the predictors of HIV-related death and their corresponding effect sizes (adjusted relative risk). A random-effect meta-analysis model will be used to synthesize the unbiased estimate of risk (relative risk) per predictor. Epidemiological metrics such as risk responsiveness, geotemporal trend, risk weight (Rw), clinical minimum important difference (CMID), predictors interaction density (PID), critical risk points, and potential cost implication will be computed. A combination of Rw and CMID will be used for risk stratification. The model's constituent items will be selected based on the combination of Rw, CMID, PID and cost implication. In the validation phase, we will apply the emergent model to classify participants using a secondary data obtained from a cohort of people living with HIV in East and West Africa, with outcomes including sensitivity, specificity, calibration, and area under the receiver operating characteristic curve (AUC).
The study is projected to commence in October 2025 and end in September 2026. The expected result will be published in November 2026. The result will be presented using narrative and quantitative synthesis. Indices of causality namely as strength of association, temporality, consistency, biological gradient, and specificity of the predictor-outcome association will be presented in a tabular format. TheAUC will be used to decide the optimal critical risk point for the emergent predictive algorithm.
Effective prognostication coupled with intense monitoring and evaluation, and prioritizing of therapeutic targets could positively turn around the fate of millions of people living with HIV at risk of premature death in SSA.
PROSPERO CRD42023430437; https://www.crd.york.ac.uk/PROSPERO/view/CRD42023430437.
INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/63783.
撒哈拉以南非洲地区(SSA)感染艾滋病毒者的过早死亡是高度可预防的。然而,缺乏包容性、具有成本效益的预后工具仍然是一项挑战。大多数预后工具是在高收入经济体中开发的。艾滋病毒相关死亡流行病学中独特的文化动态使其不适用于该地区。此外,这些模型缺乏基于临床相关性对死亡决定因素进行系统分层,并且一些纳入的因素对于SSA的艾滋病毒感染者来说过于昂贵。
我们旨在创建一个量身定制的预测模型,该模型考虑到SSA的独特背景,包括文化动态、成本效益和临床相关性。
这是一项分两个阶段的研究。在开发阶段,我们将结合证据综合方法,即荟萃分析、应用流行病学、生物统计学和经济学范式,为SSA的艾滋病毒感染者开发一种预后模型。在构建荟萃分析时将遵循系统评价和荟萃分析的首选报告项目(PRISMA)方案。从创建至今,我们将检索非洲期刊(Sabinet)以及PubMed、Scopus、MEDLINE、学术搜索完整版、开放获取存储库目录、考克兰图书馆、科学引文索引、EMBASE以及护理与联合健康文献累积索引数据库。仅纳入质量中等至高的队列研究。主要结局变量包括艾滋病毒相关死亡的预测因素及其相应的效应量(调整后的相对风险)。将使用随机效应荟萃分析模型来综合每个预测因素的无偏风险估计值(相对风险)。将计算诸如风险反应性、地理时间趋势、风险权重(Rw)、临床最小重要差异(CMID)、预测因素交互密度(PID)、关键风险点和潜在成本影响等流行病学指标。将使用Rw和CMID的组合进行风险分层。模型的组成项目将根据Rw、CMID、PID和成本影响的组合来选择。在验证阶段,我们将应用新出现的模型,使用从东非和西非的一组艾滋病毒感染者中获得的二次数据对参与者进行分类,结局包括敏感性、特异性、校准以及受试者工作特征曲线下面积(AUC)。
该研究预计于2025年10月开始并于2026年9月结束。预期结果将于2026年11月发表。结果将采用叙述性和定量综合的方式呈现。因果关系指标,即关联强度、时间顺序、一致性、生物学梯度以及预测因素与结局关联的特异性,将以表格形式呈现。AUC将用于确定新出现的预测算法的最佳关键风险点。
有效的预后评估,再加上强化监测和评价以及对治疗靶点进行优先排序,可能会积极扭转SSA数百万面临过早死亡风险的艾滋病毒感染者的命运。
PROSPERO CRD42023430437;https://www.crd.york.ac.uk/PROSPERO/view/CRD42023430437。
国际注册报告识别号(IRRID):PRR1 - 10.2196/63783。