文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

多系统萎缩中肠道微生物网络和代谢途径的改变:一项比较性16S rRNA研究

Altered gut microbial networks and metabolic pathways in multiple system atrophy: a comparative 16S rRNA study.

作者信息

Liu Po-Chun, Cheng Shao-Ying, Li Chih-Chi, Wang Yu-Ke, Tseng Yufeng Jane, Kuo Ming-Che

机构信息

Cathay General Hospital, Taipei, Taiwan.

Department of Neurology, National Taiwan University Hospital Bei-Hu Branch, Taipei, Taiwan.

出版信息

Front Neurosci. 2025 Aug 13;19:1623165. doi: 10.3389/fnins.2025.1623165. eCollection 2025.


DOI:10.3389/fnins.2025.1623165
PMID:40880853
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12380817/
Abstract

INTRODUCTION: The alterations in the gut microbial network in multiple system atrophy (MSA) remain poorly understood. This study aimed to identify key gut microbial interaction networks in MSA through comprehensive multimodal analyses. METHODS: Demographic information and frozen fecal specimens were collected from 119 participants [MSA, = 26; Parkinson's disease (PD), = 66; healthy control (HC), = 27]. Raw amplicons of the bacterial 16S rRNA V3-V4 gene region were processed using two methods: DADA2-denoising and clustering into operational taxonomic units. We conducted univariate and multivariable analyses to assess the differential abundance of bacterial genera and predicted metabolic pathways using four statistical methods: ANCOM, ANCOM-BC, ALDEx2, and MaAsLin 2. Interbacterial interactions were assessed using four correlation and two network analyses. RESULTS: We consistently observed lower levels of in MSA patients and lower levels of in PD patients compared with HCs (q < 0.05), both before and after adjusting for comorbidities, diet, and constipation status. The random forest classifiers effectively differentiated between MSA and PD, achieving high AUCs (0.75-0.78) in 5-fold cross-validation. A significant positive interbacterial interaction between group and was uniquely observed in MSA patients. Additionally, we identified an increase in the ARGORNPROST-PWY pathway (L-arginine degradation, q = 0.003) and a decrease in the PWY-6478 pathway (GDP-D-glycero-α-D-manno-heptose biosynthesis, q = 0.015) in MSA patients compared with HCs. CONCLUSION: Future studies are warranted to determine whether fecal microbiome-derived signatures can serve as reliable biomarkers for MSA.

摘要

引言:多系统萎缩(MSA)患者肠道微生物网络的变化仍知之甚少。本研究旨在通过全面的多模态分析确定MSA中关键的肠道微生物相互作用网络。 方法:收集了119名参与者的人口统计学信息和冷冻粪便样本[MSA,n = 26;帕金森病(PD),n = 66;健康对照(HC),n = 27]。细菌16S rRNA V3-V4基因区域的原始扩增子使用两种方法进行处理:DADA2去噪和聚类为可操作分类单元。我们使用四种统计方法(ANCOM、ANCOM-BC、ALDEx2和MaAsLin 2)进行单变量和多变量分析,以评估细菌属的差异丰度和预测的代谢途径。使用四种相关性分析和两种网络分析评估细菌间的相互作用。 结果:在调整合并症、饮食和便秘状态前后,我们一致观察到与健康对照相比,MSA患者的[具体细菌名称1]水平较低,PD患者的[具体细菌名称2]水平较低(q < 0.05)。随机森林分类器能够有效区分MSA和PD,在5折交叉验证中获得了较高的AUC(0.75 - 0.78)。在MSA患者中独特地观察到[细菌组名称]组和[另一细菌名称]之间存在显著的正细菌间相互作用。此外,与健康对照相比,我们发现MSA患者中ARGORNPROST-PWY途径(L-精氨酸降解,q = 0.003)增加,PWY-6478途径(GDP-D-甘油-α-D-甘露庚糖生物合成,q = 0.015)减少。 结论:未来有必要进行研究以确定粪便微生物组衍生特征是否可作为MSA的可靠生物标志物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3cc/12380817/ff6639b3fb20/fnins-19-1623165-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3cc/12380817/4ee81c9c4400/fnins-19-1623165-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3cc/12380817/56304840794f/fnins-19-1623165-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3cc/12380817/7ee877454862/fnins-19-1623165-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3cc/12380817/ff6639b3fb20/fnins-19-1623165-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3cc/12380817/4ee81c9c4400/fnins-19-1623165-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3cc/12380817/56304840794f/fnins-19-1623165-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3cc/12380817/7ee877454862/fnins-19-1623165-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b3cc/12380817/ff6639b3fb20/fnins-19-1623165-g004.jpg

相似文献

[1]
Altered gut microbial networks and metabolic pathways in multiple system atrophy: a comparative 16S rRNA study.

Front Neurosci. 2025-8-13

[2]
Integrating Gut Microbiome and Metabolomics with Magnetic Resonance Enterography to Advance Bowel Damage Prediction in Crohn's Disease.

J Inflamm Res. 2025-6-11

[3]
16S rRNA gene amplicon sequencing for microbiota analysis of rumen fluid, feces, and milk of Sarda sheep fed different content of alfalfa hay (Medicago sativa).

J Dairy Sci. 2025-7-7

[4]
The association between gut microbiota composition and cardiometabolic parameters in healthy adults.

BMC Microbiol. 2025-8-14

[5]
Characteristic alterations of gut microbiota and metabolites in patients with perianal abscess: a multi-omics analysis.

Front Microbiol. 2025-7-17

[6]
Unveiling the diagnostic and pro-inflammatory role of crohn's disease: insights from 16 S-guided discovery and species-specific validation.

BMC Gastroenterol. 2025-7-1

[7]
Altered fecal microbiome and metabolome in adult patients with non-cystic fibrosis bronchiectasis.

Respir Res. 2022-11-19

[8]
Analysis of biomarkers in speculative CNS-enriched extracellular vesicles for parkinsonian disorders: a comprehensive systematic review and diagnostic meta-analysis.

J Neurol. 2024-4

[9]
Intestinal biomarkers, microbiota composition, and genetic predisposition to inflammatory bowel disease as predictors of Parkinson's disease manifestation.

J Parkinsons Dis. 2025-5-7

[10]
Significant associations between high-risk sexual behaviors and enterotypes of gut microbiome in HIV-negative men who have sex with men.

mSphere. 2025-6-25

本文引用的文献

[1]
The Gut-Brain Axis in Parkinson disease: Emerging Concepts and Therapeutic Implications.

Mov Disord Clin Pract. 2025-3-13

[2]
Beneficial effects of GABA-producing potential probiotic Limosilactobacillus fermentum L18 of human origin on intestinal permeability and human gut microbiota.

Microb Cell Fact. 2023-12-12

[3]
Understanding the potential causes of gastrointestinal dysfunctions in multiple system atrophy.

Neurobiol Dis. 2023-10-15

[4]
Gut-to-brain spreading of pathology in synucleinopathies: A focus on molecular signalling mediators.

Behav Brain Res. 2023-8-24

[5]
Gut microbiome dysbiosis across early Parkinson's disease, REM sleep behavior disorder and their first-degree relatives.

Nat Commun. 2023-5-2

[6]
Ruminococcus gnavus: friend or foe for human health.

FEMS Microbiol Rev. 2023-3-10

[7]
Genetic correlations between Alzheimer's disease and gut microbiome genera.

Sci Rep. 2023-3-31

[8]
normalizes blood-brain barrier dysfunction and neurodevelopment deficits associated with prenatal exposure to lipopolysaccharide.

Gut Microbes. 2023

[9]
The diagnostic and prognostic potential of gut bacteria in inflammatory bowel disease.

Gut Microbes. 2023

[10]
The gut microbiota in multiple sclerosis varies with disease activity.

Genome Med. 2023-1-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索