Bothra Pallavi, Stieg Adam Z, Gimzewski James K, Sautet Philippe
Chemical and Biomolecular Engineering Department, University of California, Los Angeles, Los Angeles, California 90095, United States.
California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.
Precis Chem. 2023 Mar 30;1(2):119-126. doi: 10.1021/prechem.3c00011. eCollection 2023 Apr 24.
To explore a proof-of-concept for atomically precise manufacturing (APM) using scanning probe microscopy (SPM), first principle theoretical calculations of atom-by-atom transfer from the apex of an SPM tip to an individual radical on a surface-bound organic molecule have been performed. Atom transfer is achieved by spatially controlled motion of a gold terminated tip to the radical. Two molecular tools for SPM-based APM have been designed and investigated, each comprising an adamantane core, a radical end group, and trithiol linkers to enable strong chemisorption on the Au(111) surface: ethynyl-adamantane-trithiol and adamantyl-trithiol. We demonstrate the details of controlled Au atom abstraction during tip approach toward and retraction from the radical species. Upon approach of the tip, the apical Au atom undergoes a transfer toward the carbon radical at a clearly defined threshold separation. This atomic displacement is accompanied by a net energy gain of the system in the range -0.5 to -1.5 eV, depending on the radical structure. In the case of a triangular pyramidal apex model, two tip configurations are possible after the tip atom displacement: (1) an Au atom is abstracted from the tip and bound to the C radical, not bound to the tip base anymore, and (2) apical tip atoms rearrange to form a continuous neck between the tip and radical. In the second case, subsequent tip retraction leads to the same final configuration as the first, with the abstracted Au atom bound to radical carbon atom of the molecular tool. For the less reactive adamantyl-trithiol radical molecular tool, Au atom transfer is less energetically favored, but this has the advantage of avoiding other apex gold atoms from rearrangement.
为了探索使用扫描探针显微镜(SPM)进行原子精确制造(APM)的概念验证,已经进行了从SPM针尖顶端到表面结合有机分子上单个自由基的逐个原子转移的第一性原理理论计算。原子转移是通过将金终止的针尖在空间上控制移动到自由基上实现的。已经设计并研究了两种基于SPM的APM分子工具,每种工具都包含一个金刚烷核心、一个自由基端基和三硫醇连接体,以实现对Au(111)表面的强化学吸附:乙炔基-金刚烷-三硫醇和金刚烷基-三硫醇。我们展示了在针尖接近和远离自由基物种过程中受控金原子提取的细节。当针尖接近时,顶端的金原子在明确界定的阈值间距处向碳自由基转移。这种原子位移伴随着系统在-0.5至-1.5 eV范围内的净能量增益,这取决于自由基的结构。在三角锥顶端模型的情况下,针尖原子位移后可能有两种针尖构型:(1)一个金原子从针尖被提取并与C自由基结合,不再与针尖基部结合,(2)顶端针尖原子重新排列以在针尖和自由基之间形成连续的颈部。在第二种情况下,随后的针尖回缩导致与第一种情况相同的最终构型,即被提取的金原子与分子工具的自由基碳原子结合。对于反应性较低的金刚烷基-三硫醇自由基分子工具,金原子转移在能量上不太有利,但这具有避免其他顶端金原子重新排列的优点。