Suppr超能文献

舔舐微观结构行为可对小鼠的一系列情绪状态进行分类。

Licking microstructure behavior classifies a spectrum of emotional states in mice.

作者信息

Salalha Randa, Holzman Micky, Cruciani Federica, David Gil Ben, Amir Yam, Mawase Firas, Rosenblum Kobi

机构信息

Sagol Department of Neuroscience, The Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel.

Department of Human Biology, Faculty of Natural Sciences, University of Haifa, Haifa, Israel.

出版信息

Front Syst Neurosci. 2025 Aug 13;19:1623084. doi: 10.3389/fnsys.2025.1623084. eCollection 2025.

Abstract

Measuring precise emotional tagging for taste information, with or without the use of words, is challenging. While affective taste valence and salience are core components of emotional experiences, traditional behavioral assays for taste preference, which often rely on cumulative consumption, lack the resolution to distinguish between different affective states, such as innate versus learned aversion, which are known to be mediated by distinct neural circuits. To overcome this limitation, we developed an open-source system for high-resolution microstructural analysis of licking behavior in freely moving mice. Our approach integrates traditional lick burst analysis with a proprietary software pipeline that utilizes interlick interval (ILI) distributions and principal component analysis (PCA) to create a multidimensional behavioral profile of the animal. Using this system, we characterized the licking patterns associated with innate appetitive, aversive, and neutral tastants. While conventional burst analysis failed to differentiate between two palatable stimuli (water and saccharin), our multidimensional approach revealed distinct and quantifiable behavioral signatures for each. Critically, this approach successfully dissociates innate and learned aversive taste valences, a distinction that cannot be achieved using standard metrics. By providing the designs for our custom-built setup and analysis software under an open-source license, this study offers a comprehensive and accessible methodology for examining hedonic responses in future studies. This powerful toolkit enhances our understanding of sensory valence processing and provides a robust platform for future investigations of the neurobiology of ingestive behavior.

摘要

测量味觉信息的精确情感标记,无论是否使用语言,都具有挑战性。虽然情感味觉效价和显著性是情感体验的核心组成部分,但传统的味觉偏好行为测定方法通常依赖于累积摄入量,缺乏区分不同情感状态的分辨率,比如天生厌恶与习得性厌恶,已知它们由不同的神经回路介导。为克服这一局限性,我们开发了一个开源系统,用于对自由活动小鼠的舔舐行为进行高分辨率微观结构分析。我们的方法将传统的舔舐爆发分析与一个专有软件管道相结合,该管道利用舔舐间隔(ILI)分布和主成分分析(PCA)来创建动物的多维行为概况。使用这个系统,我们描绘了与天生的偏好性、厌恶性和中性味觉刺激相关的舔舐模式。虽然传统的爆发分析无法区分两种可口的刺激物(水和糖精),但我们的多维方法揭示了每种刺激物独特且可量化的行为特征。至关重要的是,这种方法成功地区分了天生的和习得的厌恶性味觉效价,这是使用标准指标无法实现的区分。通过以开源许可提供我们定制设备和分析软件的设计,本研究为未来研究检查享乐反应提供了一种全面且易于使用的方法。这个强大的工具包增强了我们对感觉效价处理的理解,并为未来摄食行为神经生物学的研究提供了一个强大的平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2a08/12380781/827eb2036a63/fnsys-19-1623084-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验