Zhou Zhenghong, Ma Han, Zhou Jie, Sun Yang, Wu Rongfeng, Gao Sen, Zhao Shiyin, Liu Bing, Nian Yong, Yang Bo, Zhu Lijuan, Zhu Feng
Frontiers Science Center for Transformative Molecules, Center for Chemical Glycobiology, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
J Am Chem Soc. 2025 Aug 29. doi: 10.1021/jacs.5c10308.
Boron neutron capture therapy (BNCT) is a promising and selective strategy for treating aggressive and refractory tumors, but its clinical success depends on the development of effective boron delivery agents. These agents must offer high tumor selectivity, structural stability, and sufficient boron content─criteria that current clinical options fail to fully satisfy. Herein, we report a visible-light-driven decarboxylative B-C cross-coupling between boron-functionalized carborane carboxylic acids and dehydroalanine (Dha)-containing peptides, enabling the first synthesis of boron-vertex-substituted carboranyl peptides under mild conditions. This photocatalyzed site-selective Giese involves the reaction of photogenerated boron vertex-centered carboranyl radicals to Dha residues, affording carborane-peptide conjugates in good to high yields and with excellent functional group tolerance. Enantiopure boron-vertex-substituted carboranylalanines were successfully synthesized using chiral Karady-Beckwith Dha derivatives, enabling their incorporation into well-defined complex peptides (comprising 5 and 15 residues) via solid-phase peptide synthesis. The synthetic utility of this platform was further demonstrated through a DNA-compatible click reaction, which enabled the attachment of carborane-bearing motifs to DNA tags. Moreover, B-C coupled carboranylalanines were conjugated to biologically relevant molecules such as nucleic acid aptamers to enhance tumor-targeting properties. Preliminary cellular studies confirmed that aptamer-carborane-amino acid conjugates exhibit efficient tumor cell recognition and uptake. Collectively, this work establishes a versatile and late-stage strategy for the site-selective installation of carborane units onto biomolecules via B-C bond formation, significantly expanding the chemical space of boron-rich peptide architectures and advancing the development of next-generation BNCT agents.
硼中子俘获疗法(BNCT)是一种治疗侵袭性和难治性肿瘤的有前景的选择性策略,但其临床成功取决于有效的硼递送剂的开发。这些药剂必须具有高肿瘤选择性、结构稳定性和足够的硼含量,而目前的临床选择未能完全满足这些标准。在此,我们报道了硼功能化碳硼烷羧酸与含脱氢丙氨酸(Dha)的肽之间的可见光驱动脱羧B-C交叉偶联反应,首次在温和条件下合成了硼顶点取代的碳硼烷肽。这种光催化的位点选择性吉泽反应涉及光生硼顶点中心的碳硼烷基自由基与Dha残基的反应,以良好至高的产率和优异的官能团耐受性得到碳硼烷-肽缀合物。使用手性卡拉迪-贝克威思Dha衍生物成功合成了对映体纯的硼顶点取代的碳硼烷丙氨酸,通过固相肽合成将其掺入明确的复杂肽(包含5个和15个残基)中。通过与DNA兼容的点击反应进一步证明了该平台的合成效用,该反应能够将含碳硼烷的基序连接到DNA标签上。此外,B-C偶联的碳硼烷丙氨酸与生物相关分子如核酸适体缀合,以增强肿瘤靶向特性。初步细胞研究证实,适体-碳硼烷-氨基酸缀合物表现出有效的肿瘤细胞识别和摄取。总的来说,这项工作建立了一种通用的后期策略,通过形成B-C键将碳硼烷单元位点选择性地安装到生物分子上,显著扩展了富硼肽结构的化学空间,并推动了下一代BNCT药剂的开发。