Li Jianbin, Li Chao-Jun
School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China.
Guangdong Basic Research Center of Excellence for Aggregate Science, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong 518172, China.
Acc Chem Res. 2025 Sep 9. doi: 10.1021/acs.accounts.5c00513.
ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds. A persistent challenge, however, lies in the efficient generation of radicals and controllable addition to the electron-deficient heteroaromatic systems. In our pursuit of protocols to overcome these limitations, we unexpectedly uncovered the photochemical potential of quinoline, which is a naturally abundant, synthetically accessible, and structurally versatile heteroaromatic scaffold that has long served as a prototypical substrate in Minisci-type chemistry. Guided by this serendipitous insight and our scientific curiosity, we successfully repurposed quinoline and its derivatives not merely as substrates but also as a versatile and systematic photochemical toolbox capable of participating in, mediating, and ultimately catalyzing a broad spectrum of radical transformations beyond Minisci-type reactions.This Account weaves together our decade-long research program with several interrelated directions that demonstrate quinoline's photosynthetic versatility and adaptability. Our exploration began with the photochemical Minisci-type alkylation of quinolines using alkyl radicals generated via various approaches, highlighting this heterocycle's capacity as a robust radical acceptor for direct C()-H functionalization of drug-like compounds. This foundational success prompted a deeper inquiry into quinoline's redox behaviors under direct excitation, wherein we discovered its dual ability to engage its own scaffold to form radical intermediates from otherwise challenging precursors while simultaneously partaking in the Minisci-type alkylation as a classic reaction partner. Armed with this insight, we further developed quinoline derivatives that undergo direct photolysis to release alkyl radicals from their structures. Such a design shifts the role of quinolines from passive substrates to photoactive reagents, thereby enabling greater flexibility in the substrate and reaction scope beyond Minisci-type chemistry and expanding the mechanistic space available for radical-based transformations. Progressing toward catalysis, the extended conjugation and redox tunability of diarylquinoline scaffolds guided our design of organophotocatalysts featuring the unique proton- and photon-activation mode, offering efficient alkylative coupling pathways with diverse combinations of radical donors and acceptors. In parallel, we designed a photoactive diarylquinoline-based ligand capable of chelating a range of base metals, thus streamlining the dual metallaphotoredox catalysis into a single metal-ligand framework for diverse C-C and C-X bond-forming cross couplings without external photocatalysts.Together, we presented quinoline's evolution from a common organic substrate to a multifaceted linchpin in modern photochemical synthesis. Through these diverse yet interconnected efforts, we illustrate that simple light irradiation, coupled with rational molecular design, can reimagine a familiar molecular scaffold to unlock unforeseen opportunities across multiple domains, which could inspire more reactivity paradigms for other untapped chemical entities.
概述
分子光化学通过利用有机分子的激发态,提供了一个与热化学截然不同的平台,可在温和条件下生成具有反应活性的开壳层或自旋活性物种。在其众多应用中,米尼斯基型反应(一种历史上依赖热引发自由基条件的转化反应)借助现代光化学策略实现了复兴,反应效率和选择性均有所提高。因此,光化学米尼斯基型反应是杂芳烃C()-H官能化最有效的方法之一,这在药物化学中对于生物活性支架的快速多样化具有特别重要的意义。然而,一个长期存在的挑战在于如何高效地产生自由基并可控地加成到缺电子的杂芳环体系上。在我们寻求克服这些限制的方案的过程中,我们意外地发现了喹啉的光化学潜力。喹啉是一种天然丰富、易于合成且结构多样的杂芳环支架,长期以来一直是米尼斯基型化学中的典型底物。受这一意外发现和我们的科学好奇心的引导,我们成功地将喹啉及其衍生物重新定位,不仅作为底物,而且作为一个多功能且系统的光化学工具箱,能够参与、介导并最终催化米尼斯基型反应之外的广泛自由基转化。
本综述将我们长达十年的研究计划与几个相互关联的方向结合在一起,展示了喹啉的光化学多功能性和适应性。我们的探索始于使用通过各种方法生成的烷基自由基对喹啉进行光化学米尼斯基型烷基化反应,突出了这种杂环作为药物类化合物直接C()-H官能化的强大自由基受体的能力。这一基础性的成功促使我们更深入地探究喹啉在直接激发下的氧化还原行为,在此过程中我们发现它具有双重能力:既能利用自身支架与原本具有挑战性的前体形成自由基中间体,又能作为经典反应伙伴参与米尼斯基型烷基化反应。基于这一认识,我们进一步开发了喹啉衍生物,它们通过直接光解从其结构中释放烷基自由基。这种设计将喹啉的角色从被动底物转变为光活性试剂,从而在米尼斯基型化学之外的底物和反应范围上实现了更大的灵活性,并扩展了基于自由基转化的机理空间。朝着催化方向发展,二芳基喹啉支架的扩展共轭和氧化还原可调性指导我们设计了具有独特质子和光子活化模式的有机光催化剂,为自由基供体和受体的各种组合提供了有效的烷基化偶联途径。同时,我们设计了一种基于二芳基喹啉的光活性配体,它能够螯合一系列碱金属,从而将双金属光氧化还原催化简化为一个单一的金属-配体框架,用于在无外部光催化剂的情况下进行各种C-C和C-X键形成的交叉偶联反应。
我们共同展示了喹啉从一种常见的有机底物演变为现代光化学合成中一个多面的关键要素的过程。通过这些多样但相互关联的努力,我们表明简单的光照射加上合理的分子设计,可以重新构想一个熟悉的分子支架,以在多个领域解锁意想不到的机会,这可能会为其他未开发的化学实体激发更多的反应范式。