Esteban-Ortega Gema María, Torres-Campos Elena, Díaz-Guerra Margarita
Instituto de Investigaciones Biomédicas Sols-Morreale (IIBM), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Madrid, 28029, Spain.
Centro de Biología Molecular Severo Ochoa (CBMSO), Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Nicolás Cabrera,1, Madrid, 28049, Spain.
Cell Death Dis. 2025 Aug 29;16(1):659. doi: 10.1038/s41419-025-07990-6.
Excitotoxicity, aberrant function of survival pathways dependent on brain-derived neurotrophic factor (BDNF), and disruption of the Golgi complex are shared pathological hallmarks in relevant neurological diseases, including stroke. However, the precise interdependence among these mechanisms is not completely defined, knowledge essential for developing neuroprotective strategies. For ischemic stroke, a leading cause of death, disability, and dementia, interfering with excitotoxicity-the major mechanism of neuronal death in the penumbra area-has shown promising results. We are exploring neuroprotection by promoting survival cascades dependent on the BDNF receptor, full-length tropomyosin-related kinase B (TrkB-FL), as these pathways become aberrant after excitotoxicity. We previously developed MTFL, a blood-brain barrier (BBB) permeable neuroprotective peptide containing a TrkB-FL sequence, which efficiently prevents excitotoxicity-induced receptor processing and preserves BDNF-dependent pathways in an ischemia model, where it decreases infarct size and improves neurological outcome. In this work, using cellular and animal models, we demonstrate that excitotoxicity-induced TrkB-FL downregulation is secondary to receptor endocytosis, interaction with the endosomal protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs), retrograde transport to the Golgi, and subsequent disruption of this organelle. Interestingly, peptide MTFL interferes with the TrkB-FL/Hrs interaction and receptor trafficking-processes required for excitotoxic Golgi fragmentation and TrkB-FL cleavage-demonstrating a central role for TrkB-FL in controlling Golgi stability. These results suggest the potential for peptide MTFL to preserve the function of this organelle and critical neuronal survival pathways in stroke and possibly other neurodegenerative diseases associated with excitotoxicity.
兴奋性毒性、依赖脑源性神经营养因子(BDNF)的生存途径的异常功能以及高尔基体复合体的破坏是包括中风在内的相关神经疾病共有的病理特征。然而,这些机制之间的确切相互依存关系尚未完全明确,而这一知识对于制定神经保护策略至关重要。对于作为死亡、残疾和痴呆主要原因的缺血性中风,干扰兴奋性毒性(半暗带区域神经元死亡的主要机制)已显示出有前景的结果。我们正在探索通过促进依赖BDNF受体全长原肌球蛋白相关激酶B(TrkB-FL)的生存级联反应来实现神经保护,因为这些途径在兴奋性毒性后会变得异常。我们之前开发了MTFL,一种具有TrkB-FL序列且可透过血脑屏障(BBB)的神经保护肽,在缺血模型中它能有效防止兴奋性毒性诱导的受体加工,并保留BDNF依赖的途径,可减小梗死体积并改善神经功能结果。在这项工作中,我们使用细胞和动物模型证明,兴奋性毒性诱导的TrkB-FL下调继发于受体内吞、与内体蛋白肝细胞生长因子调节的酪氨酸激酶底物(Hrs)相互作用、逆行转运至高尔基体以及随后该细胞器的破坏。有趣的是,肽MTFL干扰TrkB-FL/Hrs相互作用和受体转运(兴奋性毒性高尔基体碎片化和TrkB-FL裂解所需的过程),表明TrkB-FL在控制高尔基体稳定性中起核心作用。这些结果表明肽MTFL有可能在中风以及可能与兴奋性毒性相关的其他神经退行性疾病中保留该细胞器的功能和关键的神经元生存途径。