Fernandes Camila Felix de Lima, Lopes Marilene Hohmuth, Souza Maria Clara da Silva, Soares Samuel Ribeiro, Arévalo-Romero Jenny Andrea, Lackie Rachel E, Coelho Bárbara Paranhos, de Araújo João Pedro Alves, Boccacino Jacqueline Marcia, Iglesia Rebeca Piatniczka, Melo-Escobar Maria Isabel, Prado Mariana Brandão, Falchetti Marcelo, Ferreira Frederico Moraes, Nakaya Helder, Dos Santos Tiago Góss, da Rocha Edroaldo Lummertz, Beraldo Flávio H, Prado Vania F, Prado Marco A M
Laboratory of Neurobiology and Stem cells, Department of Cell and Developmental Biology; Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.
Robarts Research Institute, The University of Western Ontario, London, ON, Canada.
Commun Biol. 2025 Aug 29;8(1):1302. doi: 10.1038/s42003-025-08763-9.
Proteostasis, maintained by a network of molecular chaperones, plays a central role in cell biology, and has emerged as a critical mechanism underlying pluripotency and development. The stress-inducible phosphoprotein 1 (STIP1) is a co-chaperone essential for proteostasis. STIP1 knockout causes embryonic lethality in mice, but its precise function during embryogenesis remains poorly understood. Here, we investigate the role of STIP1 in early development using in silico and cell-based approaches. Single-cell RNA sequencing data reveals that Stip1 is co-expressed with pluripotency genes in mouse embryos, suggesting a role in stem cell maintenance. To test this, we generated mouse embryonic stem cells (mESCs) from genetically modified mice with altered Stip1/STIP1 expression. STIP1 depletion in mESCs decreases the expression of pluripotency markers, reduces proliferation, and induces apoptosis and genomic instability, whereas its overexpression enhances pluripotency markers expression, promotes proliferation, and confers protection against cellular stress. Moreover, proteins involved in cell cycle progression and DNA damage response are differentially regulated in mESCs, depending on STIP1 levels. Our findings highlight STIP1 as a pivotal regulator of the pluripotent phenotype, early embryogenesis, and cellular resilience, advancing our understanding of proteostasis in stem cell biology and organismal development, with potential implications for disease modeling and regenerative medicine.
由分子伴侣网络维持的蛋白质稳态在细胞生物学中起着核心作用,并已成为多能性和发育的关键机制。应激诱导磷蛋白1(STIP1)是蛋白质稳态所必需的共伴侣蛋白。STIP1基因敲除会导致小鼠胚胎致死,但对其在胚胎发育过程中的精确功能仍知之甚少。在这里,我们使用计算机模拟和基于细胞的方法研究STIP1在早期发育中的作用。单细胞RNA测序数据显示,Stip1在小鼠胚胎中与多能性基因共表达,提示其在干细胞维持中发挥作用。为了验证这一点,我们从Stip1/STIP1表达改变的转基因小鼠中生成了小鼠胚胎干细胞(mESC)。mESC中STIP1的缺失会降低多能性标志物的表达,减少增殖,并诱导凋亡和基因组不稳定,而其过表达则会增强多能性标志物的表达,促进增殖,并赋予细胞对压力的保护作用。此外,参与细胞周期进程和DNA损伤反应的蛋白质在mESC中受到不同的调节,这取决于STIP1的水平。我们的研究结果突出了STIP1作为多能表型、早期胚胎发育和细胞恢复力的关键调节因子,增进了我们对干细胞生物学和机体发育中蛋白质稳态的理解,对疾病建模和再生医学具有潜在意义。