Shepherd Skye, Liu Weinan, Bhaskar Seemesh, Cunningham Brian T
Nick Holonyak Jr. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Anal Bioanal Chem. 2025 Aug 30. doi: 10.1007/s00216-025-06056-y.
The unique optical interaction of species such as nanomaterials, proteins, viruses, antibodies, microRNA, and exosomes with the one-dimensional grating-based photonic crystals (PCs) has been leveraged in their detection using photonic crystal absorption microscopy (PRAM). While the principle and fundamental mechanism of such interfacial interactions are well delineated using wavelength and intensity modulations associated with the guided-mode resonance (GMR) of the PC, the effect of nano-assemblies in place of nanoparticles (NPs) has not been reported previously. In this work, the fundamental limitations observed with pristine NPs are overcome through the use of tunable AuNP assemblies synthesized via adiabatic cooling technology, where tunable nano-assemblies are obtained by subjecting the respective NPs to - 196 °C. Moreover, the higher contrast rendered by magneto-plasmonic, FeO-Au hybrid nano-assemblies vis-à-vis metallic AuNP assemblies is corroborated with COMSOL Multiphysics simulations using electric and magnetic field hotspots. The high-contrast digital resolution enabled by magneto-plasmonic hybrid nano-assemblies, on account of synergistic coupling between the GMR of the underlying PC, delocalized Bragg, and localized Mie plasmons of dielectric-metal nano-assemblies, demonstrated excellent performance for microRNA-375-3p detection, opening a new window to explore hybrids of tunable "permittivity + permeability" as active probes in the design and development of microscopy-based biosensing modalities.
纳米材料、蛋白质、病毒、抗体、微小核糖核酸和外泌体等物质与基于一维光栅的光子晶体(PC)的独特光学相互作用,已被用于通过光子晶体吸收显微镜(PRAM)进行检测。虽然利用与PC的导模共振(GMR)相关的波长和强度调制很好地描述了这种界面相互作用的原理和基本机制,但此前尚未报道过用纳米组装体代替纳米颗粒(NP)的效果。在这项工作中,通过使用绝热冷却技术合成的可调谐金纳米颗粒组装体克服了原始NP所观察到的基本限制,其中通过将各个NP置于−196°C下获得可调谐纳米组装体。此外,利用电场和磁场热点的COMSOL多物理场模拟证实了磁等离子体FeO-Au混合纳米组装体相对于金属金纳米颗粒组装体具有更高的对比度。磁等离子体混合纳米组装体由于底层PC的GMR、离域布拉格和介电-金属纳米组装体的局域米氏等离子体之间的协同耦合而实现的高对比度数字分辨率,在微小核糖核酸-375-3p检测中表现出优异性能,为探索可调谐“介电常数+磁导率”的混合体作为基于显微镜的生物传感模式设计和开发中的活性探针打开了一扇新窗口。