Aguirre Miguel Ángel, Long Kenneth D, Li Nantao, Manoto Sello Lebohang, Cunningham Brian T
Department of Analytical Chemistry and Food Science and University Institute of Materials, Faculty of Science, University of Alicante, P.O. Box 99, 03080 Alicante, Spain.
Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
Chemosensors (Basel). 2018 Jun;6(2). doi: 10.3390/chemosensors6020013. Epub 2018 Mar 29.
The interaction between nanoparticles and the electromagnetic fields associated with optical nanostructures enables sensing with single-nanoparticle limits of detection and digital resolution counting of captured nanoparticles through their intrinsic dielectric permittivity, absorption, and scattering. This paper will review the fundamental sensing methods, device structures, and detection instruments that have demonstrated the capability to observe the binding and interaction of nanoparticles at the single-unit level, where the nanoparticles are comprised of biomaterial (in the case of a virus or liposome), metal (plasmonic and magnetic nanomaterials), or inorganic dielectric material (such as TiO or SiN). We classify sensing approaches based upon their ability to observe single-nanoparticle attachment/detachment events that occur in a specific location, versus approaches that are capable of generating images of nanoparticle attachment on a nanostructured surface. We describe applications that include study of biomolecular interactions, viral load monitoring, and enzyme-free detection of biomolecules in a test sample in the context of in vitro diagnostics.
纳米颗粒与光学纳米结构相关的电磁场之间的相互作用,能够实现具有单纳米颗粒检测限的传感,并通过捕获纳米颗粒的固有介电常数、吸收和散射对其进行数字分辨率计数。本文将回顾一些基本的传感方法、器件结构和检测仪器,这些方法、结构和仪器已证明能够在单单元水平上观察纳米颗粒的结合和相互作用,其中纳米颗粒由生物材料(如病毒或脂质体)、金属(等离子体和磁性纳米材料)或无机介电材料(如TiO或SiN)组成。我们根据观察特定位置发生的单纳米颗粒附着/分离事件的能力,以及能够生成纳米颗粒在纳米结构表面附着图像的方法,对传感方法进行分类。我们描述了相关应用,包括生物分子相互作用研究、病毒载量监测以及在体外诊断背景下对测试样品中生物分子进行无酶检测。