基于F-氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描代谢特征对局部晚期非小细胞肺癌程序性细胞死亡蛋白配体1表达的无创预测:一项多中心放射组学和生物学研究
Noninvasive Prediction of Programmed Cell Death Protein-Ligand 1 Expression in Locally Advanced Non-small Cell Lung Cancer by F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography-Based Metabolic Habitats: A Multicenter Radiomic and Biological Study.
作者信息
Ji Yu, Cui Kai, Zhang Juntao, Wang Jiaqi, Dai Zhengjun, Cui Yong, Ge Haojie, Zheng Jingsong, Yu Dexin
机构信息
Department of Radiology, The Second Qilu Hospital of Shandong University, Jinan, Shandong, China.
Department of Radiology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
出版信息
Ann Surg Oncol. 2025 Aug 29. doi: 10.1245/s10434-025-18139-2.
BACKGROUND
Programmed cell death protein-ligand 1 (PD-L1) expression is an important marker for immunotherapy in locally advanced non-small cell lung cancer (LA-NSCLC). PD-L1 expression has a bi-directional positive feedback relationship with glycolysis status.
OBJECTIVE
This study aimed to develop a metabolic habitat model based on F-fluorodeoxyglucose positron emission tomography/computed tomography (F-FDG PET/CT) images to predict PD-L1 expression levels in patients with LA-NSCLC, and to explore relevant biological characteristics.
METHODS
We included 219 patients from two independent centers and divided them into the training (n = 175) and testing (n = 44) cohorts. Tumors were segmented into four spatially distinct, biologically similar metabolic habitat subregions using the Otsu method. Radiomic characteristics and metabolic parameters were extracted from each habitat and used to generate multiple predictive models based on the Extra Trees classifier. Data from 1043 patients in The Cancer Genome Atlas database were used to analyze the genes associated with PD-L1 expression in NSCLC.
RESULTS
The metabolic habitat model exhibited the highest performance, with area under the curve values of 0.833 and 0.786 in the training and testing cohorts, respectively, outperforming other models. Subregion analysis revealed that high-glycolytic/high-density habitats (PET-CT) exhibited the highest metabolic characteristics, and their spatial distribution correlated positively with PD-L1 expression. Four genes (IFNG, IL2RA, HK3, and MYCN) were associated with PD-L1 expression in glycolysis gene correlation analysis.
CONCLUSIONS
The metabolic habitat model based on F-FDG PET/CT enables noninvasive prediction of PD-L1 expression in LA-NSCLC. Its interpretability is enhanced by spatial habitat distribution, thereby advancing its potential for clinical translation.
背景
程序性细胞死亡蛋白1配体(PD-L1)表达是局部晚期非小细胞肺癌(LA-NSCLC)免疫治疗的重要标志物。PD-L1表达与糖酵解状态存在双向正反馈关系。
目的
本研究旨在基于氟脱氧葡萄糖正电子发射断层扫描/计算机断层扫描(F-FDG PET/CT)图像建立代谢生境模型,以预测LA-NSCLC患者的PD-L1表达水平,并探索相关生物学特征。
方法
我们纳入了来自两个独立中心的219例患者,并将他们分为训练队列(n = 175)和测试队列(n = 44)。使用大津法将肿瘤分割为四个空间上不同但生物学上相似的代谢生境亚区域。从每个生境中提取放射组学特征和代谢参数,并基于极端随机树分类器生成多个预测模型。利用癌症基因组图谱数据库中1043例患者的数据来分析与NSCLC中PD-L1表达相关的基因。
结果
代谢生境模型表现出最高的性能,训练队列和测试队列中的曲线下面积值分别为0.833和0.786,优于其他模型。亚区域分析显示,高糖酵解/高密度生境(PET-CT)表现出最高的代谢特征,其空间分布与PD-L1表达呈正相关。在糖酵解基因相关性分析中,四个基因(IFNG、IL2RA、HK3和MYCN)与PD-L1表达相关。
结论
基于F-FDG PET/CT的代谢生境模型能够无创预测LA-NSCLC中的PD-L1表达。其可解释性通过空间生境分布得到增强,从而提升了其临床转化潜力。