Yang Hongli, Wang Yuqi, Fu Linlin, Zhang Ximeng, Zhi Congcong
Department of Pediatrics, Baoding Maternal and Child Health Hospital, Baoding, Hebei, China.
BMC Pediatr. 2025 Aug 29;25(1):665. doi: 10.1186/s12887-025-05937-6.
BACKGROUND: Despite significant advancements in neonatal care, mid to late preterm infants (32-36 weeks' gestation) remain at high risk for recurrent respiratory tract infections (RRTIs). Current prevention strategies are limited by the absence of individualized risk assessment tools. This study aimed to identify critical perinatal risk factors and to develop a robust, clinically applicable prediction model for RRTI in this vulnerable population. METHODS: A retrospective cohort study was conducted at a tertiary care hospital, enrolling 288 preterm infants born between April 2023 and April 2024. Comprehensive maternal, perinatal, and postnatal data were extracted from electronic medical records and supplemented by structured caregiver interviews. A multivariable logistic regression analysis using a stepwise selection method (entry criterion: P < 0.05; exit criterion: P > 0.10) was performed to determine independent predictors of RRTI. The derived model was externally validated in a temporally distinct cohort (n = 100) from the same center. Model performance was assessed by the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. RESULTS: Seven independent predictors were retained in the final model: small-for-gestational-age (OR = 3.53, 95% CI: 1.41-11.61), intrauterine infection (OR = 4.22, 95% CI: 1.81-9.83), mechanical ventilation > 72 h (OR = 3.00, 95% CI: 1.27-7.14), prolonged antibiotic use (> 30 days/year; OR = 2.23, 95% CI: 1.01-5.05), maternal passive smoking (OR = 2.91, 95% CI: 1.19-7.14), history of RSV infection (OR = 5.61, 95% CI: 2.24-14.08), and vaginal delivery as a protective factor (OR = 0.24, 95% CI: 0.08-0.71). The prediction model demonstrated excellent discriminatory performance with an AUC of 0.935 in the training cohort and 0.927 in the validation cohort. Overall accuracy was 75.3% for the training set and 82.0% for the validation set. CONCLUSIONS: This study presents a novel risk stratification tool that effectively identifies high-risk moderate-to-late preterm infants and facilitates targeted interventions, such as RSV prophylaxis and enhanced immune monitoring. This advancement enables tailored RSV immunoprophylaxis planning in low-resource Asian NICUs. Nonetheless, further multi-center validation studies are warranted to confirm the model's generalizability and to refine its predictive accuracy for broader clinical application.
背景:尽管新生儿护理取得了重大进展,但中晚期早产儿(妊娠32 - 36周)反复呼吸道感染(RRTIs)的风险仍然很高。目前的预防策略因缺乏个体化风险评估工具而受到限制。本研究旨在确定关键的围产期风险因素,并为这一脆弱人群开发一个强大的、临床适用的RRTI预测模型。 方法:在一家三级医疗中心进行了一项回顾性队列研究,纳入了2023年4月至2024年4月出生的288名早产儿。从电子病历中提取了全面的母亲、围产期和产后数据,并通过结构化的照顾者访谈进行补充。采用逐步选择法(进入标准:P < 0.05;退出标准:P > 0.10)进行多变量逻辑回归分析,以确定RRTI的独立预测因素。在同一中心的一个时间上不同的队列(n = 100)中对推导的模型进行外部验证。通过受试者操作特征曲线下面积(AUC)、敏感性和特异性评估模型性能。 结果:最终模型保留了7个独立预测因素:小于胎龄儿(OR = 3.53,95% CI:1.41 - 11.61)、宫内感染(OR = 4.22,95% CI:1.81 - 9.83)、机械通气> 72小时(OR = 3.00,95% CI:1.27 - 7.14)、长期使用抗生素(> 30天/年;OR = 2.23,95% CI:1.01 - 5.05)、母亲被动吸烟(OR = 2.91,95% CI:1.19 - 7.14)、呼吸道合胞病毒(RSV)感染史(OR = 5.61,95% CI:2.24 - 14.08),以及阴道分娩作为保护因素(OR = 0.24,95% CI:0.08 - 0.71)。预测模型在训练队列中的AUC为0.935,在验证队列中的AUC为0.927,显示出优异的区分性能。训练集的总体准确率为75.3%,验证集的总体准确率为82.0%。 结论:本研究提出了一种新的风险分层工具,可有效识别中晚期高危早产儿,并促进针对性干预,如RSV预防和加强免疫监测。这一进展使得在资源匮乏的亚洲新生儿重症监护病房能够制定个性化的RSV免疫预防计划。尽管如此,仍需进一步的多中心验证研究来确认该模型的通用性,并提高其预测准确性以用于更广泛的临床应用。
Cochrane Database Syst Rev. 2019-11-20
Cochrane Database Syst Rev. 2015-11-24
Cochrane Database Syst Rev. 2015-11-25
Cochrane Database Syst Rev. 2018-5-9
J Family Med Prim Care. 2025-3
Arch Gynecol Obstet. 2025-5
An Pediatr (Engl Ed). 2024-11
Pediatr Pulmonol. 2025-3