文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

中晚期早产儿复发性呼吸道感染围产期风险预测模型的开发与验证:一项回顾性队列研究

Development and validation of a perinatal risk prediction model for recurrent respiratory tract infections in moderate-to-late preterm infants: a retrospective cohort study.

作者信息

Yang Hongli, Wang Yuqi, Fu Linlin, Zhang Ximeng, Zhi Congcong

机构信息

Department of Pediatrics, Baoding Maternal and Child Health Hospital, Baoding, Hebei, China.

出版信息

BMC Pediatr. 2025 Aug 29;25(1):665. doi: 10.1186/s12887-025-05937-6.


DOI:10.1186/s12887-025-05937-6
PMID:40883729
Abstract

BACKGROUND: Despite significant advancements in neonatal care, mid to late preterm infants (32-36 weeks' gestation) remain at high risk for recurrent respiratory tract infections (RRTIs). Current prevention strategies are limited by the absence of individualized risk assessment tools. This study aimed to identify critical perinatal risk factors and to develop a robust, clinically applicable prediction model for RRTI in this vulnerable population. METHODS: A retrospective cohort study was conducted at a tertiary care hospital, enrolling 288 preterm infants born between April 2023 and April 2024. Comprehensive maternal, perinatal, and postnatal data were extracted from electronic medical records and supplemented by structured caregiver interviews. A multivariable logistic regression analysis using a stepwise selection method (entry criterion: P < 0.05; exit criterion: P > 0.10) was performed to determine independent predictors of RRTI. The derived model was externally validated in a temporally distinct cohort (n = 100) from the same center. Model performance was assessed by the area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. RESULTS: Seven independent predictors were retained in the final model: small-for-gestational-age (OR = 3.53, 95% CI: 1.41-11.61), intrauterine infection (OR = 4.22, 95% CI: 1.81-9.83), mechanical ventilation > 72 h (OR = 3.00, 95% CI: 1.27-7.14), prolonged antibiotic use (> 30 days/year; OR = 2.23, 95% CI: 1.01-5.05), maternal passive smoking (OR = 2.91, 95% CI: 1.19-7.14), history of RSV infection (OR = 5.61, 95% CI: 2.24-14.08), and vaginal delivery as a protective factor (OR = 0.24, 95% CI: 0.08-0.71). The prediction model demonstrated excellent discriminatory performance with an AUC of 0.935 in the training cohort and 0.927 in the validation cohort. Overall accuracy was 75.3% for the training set and 82.0% for the validation set. CONCLUSIONS: This study presents a novel risk stratification tool that effectively identifies high-risk moderate-to-late preterm infants and facilitates targeted interventions, such as RSV prophylaxis and enhanced immune monitoring. This advancement enables tailored RSV immunoprophylaxis planning in low-resource Asian NICUs. Nonetheless, further multi-center validation studies are warranted to confirm the model's generalizability and to refine its predictive accuracy for broader clinical application.

摘要

背景:尽管新生儿护理取得了重大进展,但中晚期早产儿(妊娠32 - 36周)反复呼吸道感染(RRTIs)的风险仍然很高。目前的预防策略因缺乏个体化风险评估工具而受到限制。本研究旨在确定关键的围产期风险因素,并为这一脆弱人群开发一个强大的、临床适用的RRTI预测模型。 方法:在一家三级医疗中心进行了一项回顾性队列研究,纳入了2023年4月至2024年4月出生的288名早产儿。从电子病历中提取了全面的母亲、围产期和产后数据,并通过结构化的照顾者访谈进行补充。采用逐步选择法(进入标准:P < 0.05;退出标准:P > 0.10)进行多变量逻辑回归分析,以确定RRTI的独立预测因素。在同一中心的一个时间上不同的队列(n = 100)中对推导的模型进行外部验证。通过受试者操作特征曲线下面积(AUC)、敏感性和特异性评估模型性能。 结果:最终模型保留了7个独立预测因素:小于胎龄儿(OR = 3.53,95% CI:1.41 - 11.61)、宫内感染(OR = 4.22,95% CI:1.81 - 9.83)、机械通气> 72小时(OR = 3.00,95% CI:1.27 - 7.14)、长期使用抗生素(> 30天/年;OR = 2.23,95% CI:1.01 - 5.05)、母亲被动吸烟(OR = 2.91,95% CI:1.19 - 7.14)、呼吸道合胞病毒(RSV)感染史(OR = 5.61,95% CI:2.24 - 14.08),以及阴道分娩作为保护因素(OR = 0.24,95% CI:0.08 - 0.71)。预测模型在训练队列中的AUC为0.935,在验证队列中的AUC为0.927,显示出优异的区分性能。训练集的总体准确率为75.3%,验证集的总体准确率为82.0%。 结论:本研究提出了一种新的风险分层工具,可有效识别中晚期高危早产儿,并促进针对性干预,如RSV预防和加强免疫监测。这一进展使得在资源匮乏的亚洲新生儿重症监护病房能够制定个性化的RSV免疫预防计划。尽管如此,仍需进一步的多中心验证研究来确认该模型的通用性,并提高其预测准确性以用于更广泛的临床应用。

相似文献

[1]
Development and validation of a perinatal risk prediction model for recurrent respiratory tract infections in moderate-to-late preterm infants: a retrospective cohort study.

BMC Pediatr. 2025-8-29

[2]
Planned early birth versus expectant management for women with preterm prelabour rupture of membranes prior to 37 weeks' gestation for improving pregnancy outcome.

Cochrane Database Syst Rev. 2017-3-3

[3]
Perinatal risk assessment in pregnancies complicated by early-onset fetal growth restriction: development and internal validation of a prediction model for composite adverse perinatal outcome.

Ultrasound Obstet Gynecol. 2025-8

[4]
Prenatal administration of progestogens for preventing spontaneous preterm birth in women with a multiple pregnancy.

Cochrane Database Syst Rev. 2019-11-20

[5]
Planned early delivery versus expectant management of the term suspected compromised baby for improving outcomes.

Cochrane Database Syst Rev. 2015-11-24

[6]
Use of biochemical tests of placental function for improving pregnancy outcome.

Cochrane Database Syst Rev. 2015-11-25

[7]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[8]
Induction of labour for improving birth outcomes for women at or beyond term.

Cochrane Database Syst Rev. 2018-5-9

[9]
Development and validation of a nomogram model for predicting the occurrence of necrotizing enterocolitis in premature infants with late-onset sepsis.

Eur J Med Res. 2025-7-8

[10]
Intrauterine inflammation exposure may increase the risk of late-onset sepsis in premature infants: a retrospective cohort study.

Ital J Pediatr. 2025-7-10

本文引用的文献

[1]
Sustained virological response in HCV patients receiving antiviral treatment at a teaching centre of northern India.

J Family Med Prim Care. 2025-3

[2]
Incorporating machine learning and statistical methods to address maternal healthcare disparities in US: A systematic review.

Int J Med Inform. 2025-8

[3]
Research priorities for preterm lung health research across the lifespan: a community priority setting partnership.

BMJ Paediatr Open. 2025-2-4

[4]
Utilizing machine-learning techniques on MRI radiomics to identify primary tumors in brain metastases.

Front Neurol. 2025-1-6

[5]
Prevalence of adolescent pregnancy and evaluation of pregnancy outcomes: a retrospective study.

Arch Gynecol Obstet. 2025-5

[6]
Early postnatal care uptake and its associated factors following childbirth in East Africa-a Bayesian hierarchical modeling approach.

Front Public Health. 2024-11-27

[7]
Management of respiratory distress syndrome in moderate/late preterm neonates: A Delphi consensus.

An Pediatr (Engl Ed). 2024-11

[8]
The developing immune system in preterm born infants: From contributor to potential solution for respiratory tract infections and wheezing.

Allergy. 2024-11

[9]
Long-term respiratory consequences of prematurity.

Pediatr Pulmonol. 2025-3

[10]
A Comment on Green Top Guideline No. 31: Investigating and Care in the Small-For-Gestational-Age and Growth Restricted Foetus.

BJOG. 2024-9-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索