Suppr超能文献

利用磁共振成像(MRI)影像组学的机器学习技术识别脑转移瘤中的原发肿瘤。

Utilizing machine-learning techniques on MRI radiomics to identify primary tumors in brain metastases.

作者信息

Yang W L, Su X R, Li S, Zhao K Y, Yue Q

机构信息

Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.

出版信息

Front Neurol. 2025 Jan 6;15:1474461. doi: 10.3389/fneur.2024.1474461. eCollection 2024.

Abstract

OBJECTIVE

To develop a machine learning-based clinical and/or radiomics model for predicting the primary site of brain metastases using multiparametric magnetic resonance imaging (MRI).

MATERIALS AND METHODS

A total of 202 patients (87 males, 115 females) with 439 brain metastases were retrospectively included, divided into training sets (brain metastases of lung cancer [BMLC]  = 194, brain metastases of breast cancer [BMBC]  = 108, brain metastases of gastrointestinal tumor [BMGiT]  = 48) and test sets (BMLC  = 50, BMBC  = 27, BMGiT  = 12). A total of 3,404 quantitative image features were obtained through semi-automatic segmentation from MRI images (T1WI, T2WI, FLAIR, and T1-CE). Intra-class correlation coefficient (ICC) was used to examine segmentation stability between two radiologists. Radiomics features were selected using analysis of variance (ANOVA), recursive feature elimination (RFE), and Kruskal-Wallis test. Three machine learning classifiers were used to build the radiomics model, which was validated using five-fold cross-validation on the training set. A comprehensive model combining radiomics and clinical features was established, and the diagnostic performance was compared by area under the curve (AUC) and evaluated in an independent test set.

RESULTS

The radiomics model differentiated BMGiT from BMLC (13 features, AUC = 0.915 ± 0.071) or BMBC (20 features, AUC = 0.954 ± 0.064) with high accuracy, while the classification between BMLC and BMBC was unsatisfactory (11 features, AUC = 0.729 ± 0.114). However, the combined model incorporating radiomics and clinical features improved the predictive performance, with AUC values of 0.965 for BMLC vs. BMBC, 0.991 for BMLC vs. BMGiT, and 0.935 for BMBC vs. BMGiT.

CONCLUSION

The machine learning-based radiomics model demonstrates significant potential in distinguishing the primary sites of brain metastases, and may assist screening of primary tumor when brain metastasis is suspected whereas history of primary tumor is absent.

摘要

目的

利用多参数磁共振成像(MRI)开发一种基于机器学习的临床和/或影像组学模型,用于预测脑转移瘤的原发部位。

材料与方法

回顾性纳入202例患者(87例男性,115例女性),共439个脑转移瘤,分为训练集(肺癌脑转移瘤[BMLC]=194个,乳腺癌脑转移瘤[BMBC]=108个,胃肠道肿瘤脑转移瘤[BMGiT]=48个)和测试集(BMLC=50个,BMBC=27个,BMGiT=12个)。通过对MRI图像(T1WI、T2WI、FLAIR和T1-CE)进行半自动分割,共获得3404个定量图像特征。采用组内相关系数(ICC)检验两名放射科医生之间分割的稳定性。使用方差分析(ANOVA)、递归特征消除(RFE)和Kruskal-Wallis检验选择影像组学特征。使用三种机器学习分类器构建影像组学模型,并在训练集上采用五折交叉验证进行验证。建立了一个结合影像组学和临床特征的综合模型,并通过曲线下面积(AUC)比较诊断性能,并在独立测试集中进行评估。

结果

影像组学模型能够以较高的准确率区分BMGiT与BMLC(13个特征,AUC=0.915±0.071)或BMBC(20个特征,AUC=0.954±0.064),而BMLC和BMBC之间的分类效果不理想(11个特征,AUC=0.729±0.114)。然而,结合影像组学和临床特征的综合模型提高了预测性能,BMLC与BMBC的AUC值为0.965,BMLC与BMGiT的AUC值为0.991,BMBC与BMGiT的AUC值为0.935。

结论

基于机器学习的影像组学模型在区分脑转移瘤的原发部位方面显示出巨大潜力,并且在怀疑有脑转移瘤而无原发肿瘤病史时,可能有助于筛查原发肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31d4/11743164/8bbfcd499d9a/fneur-15-1474461-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验