Le Roy Barbara, Claverie Damien, Sauvadet Lucas, Martin-Krumm Charles, Trousselard Marion
Human Adaptation Institute, Marseille, France.
Stress Neurophysiology Unit, French Armed Forces Biomedical Research Institute, Brétigny-sur-Orge, France.
Physiol Rep. 2025 Sep;13(17):e70447. doi: 10.14814/phy2.70447.
Long-duration space missions will challenge astronauts' adaptive capacities. Interoception and heart rate variability (HRV), reflecting parasympathetic activity, are increasingly recognized as predictors of adaptation and health. This study investigated whether artificial intelligence may predict adaptation profiles from interoceptive and HRV responses accross different space analogs. Data were collected from 84 participants in four environments: parabolic flight, nuclear submarine, sea survival simulation, and chemical/biological hazard exercises. Interoceptive sensitivity and HRV were measured to identify adaptation profiles using clustering. Baseline data were then used to train a support vector machine (SVM) to predict these profiles. Three adaptation profiles emerged, differing in interoceptive awareness, body-mind integration, and neuroception. The SVM model predicted these profiles with 79% accuracy. These findings demonstrate the feasibility of using machine learning to anticipate adaptation outcomes based on physiological and interoceptive markers. They emphasize the embodied nature of adaptation and the relevance of interoceptive pathways in HRV dynamics. This work provides new directions for optimizing astronaut training by tailoring preparation to individual physiological profiles. Tomorrow is here, we are ready for take-off.
长期太空任务将挑战宇航员的适应能力。反映副交感神经活动的内感受和心率变异性(HRV)越来越被视为适应和健康的预测指标。本研究调查了人工智能是否可以根据不同太空模拟环境中的内感受和HRV反应预测适应情况。数据收集自84名参与者,涉及四种环境:抛物线飞行、核潜艇、海上生存模拟和化学/生物危害演习。测量内感受敏感性和HRV,通过聚类确定适应情况。然后使用基线数据训练支持向量机(SVM)来预测这些情况。出现了三种适应情况,在内感受意识、身心整合和神经感受方面存在差异。SVM模型以79%的准确率预测了这些情况。这些发现证明了使用机器学习根据生理和内感受指标预测适应结果的可行性。它们强调了适应的身体本质以及内感受通路在HRV动态中的相关性。这项工作为根据个体生理状况定制准备工作以优化宇航员训练提供了新方向。明天已至,我们准备起飞。