Ren Hongji, Cai Guopu, Guo Jian, Sun Yu, Yao Wenli, Ye Daixin, Qian Huidong, Zhang Jiujun, Zhao Hongbin
Department of Physics & Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China.
Department of Chemistry, College of Sciences, Shanghai University, Shanghai, 200444, P. R. China.
Small. 2025 Aug 30:e07244. doi: 10.1002/smll.202507244.
The electrocatalytic oxidation of biomass-derived polyols (e.g., glycerol, GLY) represents a sustainable route to simultaneously produce value-added chemicals and green hydrogen under renewable energy-driven conditions. However, the intricate interplay between defect-rich metal oxides, organic intermediates, and hydroxyl species during the glycerol electro-oxidation reaction (GOR) remains poorly understood, limiting rational catalyst design. Herein, it is demonstrated that oxygen-deficient CoO nanosheets (Vo-CoO) serve as an efficient catalyst for the GOR, affording remarkable C1 product selectivity toward formic acid (FA). Synergistic experimental and theoretical investigations unravel that oxygen vacancies act as preferential adsorption sites for hydroxyl ions (OH), which dynamically reconstruct into lattice-bound hydroxyl species (*OH). This unique configuration accelerates nucleophilic attack on adsorbed glycerol intermediates, lowers the energy barrier for C─C bond cleavage, and directs the reaction pathway toward FA generation. When implemented in a flow electrolytic cell, the Vo-CoO catalyst enables continuous co-production of FA (2.75 mmol cm h) and H (3.64 mmol cm h) over 120-h. This work provides atomic-level insights into defect-mediated reaction mechanisms and establishes a paradigm for dual-pathway valorization of biomass derivatives and green hydrogen production.
生物质衍生多元醇(如甘油,GLY)的电催化氧化是在可再生能源驱动条件下同时生产增值化学品和绿色氢气的可持续途径。然而,甘油电氧化反应(GOR)过程中富含缺陷的金属氧化物、有机中间体和羟基物种之间复杂的相互作用仍知之甚少,这限制了合理的催化剂设计。在此,证明了缺氧的CoO纳米片(Vo-CoO)作为GOR的有效催化剂,对甲酸(FA)具有显著的C1产物选择性。协同的实验和理论研究表明,氧空位作为羟基离子(OH)的优先吸附位点,其动态重构为晶格结合的羟基物种(*OH)。这种独特的构型加速了对吸附的甘油中间体的亲核攻击,降低了C─C键断裂的能量势垒,并将反应途径导向FA生成。当在流动电解池中实施时,Vo-CoO催化剂能够在120小时内连续联产FA(2.75 mmol cm⁻² h⁻¹)和H₂(3.64 mmol cm⁻² h⁻¹)。这项工作提供了缺陷介导反应机制的原子级见解,并建立了生物质衍生物双途径增值和绿色氢气生产的范例。