Zhang Juntao, Yan Di, Ding Guixiang, Wang Xusheng, Li Chunxue, Zhong Sheng, Yu Yaqin, Shuai Li, Liao Guangfu
National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
Angew Chem Int Ed Engl. 2025 Sep 8;64(37):e202511448. doi: 10.1002/anie.202511448. Epub 2025 Aug 22.
Electrocatalytic oxidation of biomass-derived hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) and electrocatalytic reduction of CO into CO are two highly investigated areas. Efficient electrocatalytic system design that combines CO valorization with biomass upgrading offers a viable solution to produce high-value chemicals and renewable energy at the same time. Here, we demonstrate an interfacial-engineered CoS/Co─N─C n─n type heterojunction featuring unique dual Co sites and strong built-in electric field (BEF) effects, which enables efficient electrochemical coupling of 5-hydroxymethylfurfural oxidation reaction (HMFOR) and CO reduction reaction (CORR). The optimized catalyst achieves exceptional performance metrics, i.e., a record-low onset potential of 1.12 V (versus RHE), with 99% selectivity and 98.2% faradaic efficiency (FE) for 2,5-furandicarboxylic acid (FDCA) in HMFOR, coupled with 98.6% CO─to─CO selectivity and the FE average was retained 98.4% in CORR, which outperform the previously reported state-of-the-art electrocatalysts. Moreover, the integrated HMFOR//CORR system demonstrates impressive stability over 50 h continuous operation. Through systematic experimental examination and theoretical calculations, we reveal that the BEF boosts the formation of the unique dual Co coordination environments (Co─N electron-deficient and Co─S electron-rich configurations) through modulation of charge transport dynamics, facilitating HMF activation through *OH intermediate stabilization while promoting multi-electron CO reduction via charge accumulation. This work establishes a blueprint for developing multi-functional catalytic architectures that address the thermodynamic and kinetic challenges in coupled electrochemical systems, advancing the frontier of sustainable electrosynthesis technologies.
将生物质衍生的羟甲基糠醛(HMF)电催化氧化为2,5-呋喃二甲酸(FDCA)以及将CO电催化还原为CO是两个受到高度研究的领域。将CO增值与生物质升级相结合的高效电催化系统设计为同时生产高价值化学品和可再生能源提供了一个可行的解决方案。在此,我们展示了一种界面工程化的CoS/Co─N─C n─n型异质结,其具有独特的双Co位点和强大的内建电场(BEF)效应,能够实现5-羟甲基糠醛氧化反应(HMFOR)和CO还原反应(CORR)的高效电化学耦合。优化后的催化剂实现了卓越的性能指标,即在HMFOR中,2,5-呋喃二甲酸(FDCA)的起始电位低至1.12 V(相对于RHE),选择性为99%,法拉第效率(FE)为98.2%,同时在CORR中,CO到CO的选择性为98.6%,FE平均值保持在98.4%,优于先前报道的最先进的电催化剂。此外,集成的HMFOR//CORR系统在连续运行50小时以上表现出令人印象深刻的稳定性。通过系统的实验研究和理论计算,我们发现BEF通过调节电荷传输动力学促进了独特的双Co配位环境(Co─N缺电子和Co─S富电子构型)的形成,通过*OH中间体的稳定促进了HMF的活化,同时通过电荷积累促进了多电子CO还原。这项工作为开发多功能催化结构建立了蓝图,以应对耦合电化学系统中的热力学和动力学挑战,推动可持续电合成技术的前沿发展。