Sarti Edoardo, Dollé Cédric, Wolfensberger Rebekka, Kusejko Katharina, Russenberger Doris, Bredl Simon, Speck Roberto F, Greter Melanie, Rueschoff Jan H, Boeck Lucas, Mai Dat, Jahn Ana N, Gold Elizabeth S, Liu Dong, Diercks Alan H, Sander Peter, Olson Gregory S, Nemeth Johannes
Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
Institute of Medical Virology, University of Zurich, 8057 Zurich, Switzerland.
J Infect Dis. 2025 Aug 30. doi: 10.1093/infdis/jiaf456.
Mycobacterium tuberculosis (MTB) remains a major cause of global mortality, yet natural immunity prevents disease in more than 90% of exposed individuals. Interferon gamma (IFN-γ) is a critical regulator of innate immunity and enhances macrophage antimicrobial responses. In this study, we investigated how IFN-γ timing influences macrophage control of MTB. We found that pre-infection IFN-γ exposure primes macrophages for enhanced bacterial control by activating key antimicrobial pathways, whereas post-infection exposure fails to confer this benefit. Using unbiased in vitro systems approaches, we identified c-Myc signaling as a central determinant of macrophage antimycobacterial function. To manipulate c-Myc in primary cells, we developed a tetracycline-inducible lentiviral system for c-Myc inhibition and overexpression. c-Myc inhibition via Omomyc enhanced macrophage bacterial control through mTORC1-dependent metabolic reprogramming and nitric oxide production. In vivo analyses, including murine models and human clinical histopathology, revealed strong associations between c-Myc expression, MTB persistence, and active tuberculosis, implicating c-Myc as a mediator of immune privilege in MTB infection and a promising target for host-directed therapies to enhance macrophage function.
结核分枝杆菌(MTB)仍然是全球死亡的主要原因,然而自然免疫可防止超过90%的接触者发病。干扰素γ(IFN-γ)是先天免疫的关键调节因子,可增强巨噬细胞的抗菌反应。在本研究中,我们调查了IFN-γ的作用时间如何影响巨噬细胞对MTB的控制。我们发现,感染前暴露于IFN-γ可通过激活关键抗菌途径使巨噬细胞做好增强细菌控制的准备,而感染后暴露则无法带来这种益处。使用无偏倚的体外系统方法,我们确定c-Myc信号传导是巨噬细胞抗分枝杆菌功能的核心决定因素。为了在原代细胞中操控c-Myc,我们开发了一种用于抑制和过表达c-Myc的四环素诱导慢病毒系统。通过Omomyc抑制c-Myc可通过mTORC1依赖性代谢重编程和一氧化氮生成增强巨噬细胞对细菌的控制。包括小鼠模型和人类临床组织病理学在内的体内分析揭示了c-Myc表达、MTB持续存在和活动性结核病之间的密切关联,表明c-Myc是MTB感染中免疫特权的介质,也是增强巨噬细胞功能的宿主导向疗法的有希望的靶点。