Wei Zhuoming, Ding Yunxuan, Shi Weili, Zhang Feiyang, Song Yuxiang, Cui Xin, Guo Yu, Sun Licheng, Jiang Qike, Zhang Biaobiao
Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou, China.
Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
Nat Commun. 2025 Aug 31;16(1):8145. doi: 10.1038/s41467-025-63577-x.
The use of single-atom catalysts is an effective way to reduce the amount of iridium in proton exchange membrane water electrolysis (PEM-WE). However, conventional methods can only obtain surface-loaded single atoms or clusters which cannot meet the needs of high current density and stability. In this study, assisted by lanthanum-doping-induced ion exchange, we realize atomically anchoring iridium within the CoO lattice. The lattice anchored iridium in lanthanum-doped CoO exhibits higher atomic dispersion, a larger average coordination number, and an elevated oxidation state. This improvement stimulates the oxide path mechanism (OPM), resulting in enhanced activity (236 mV at 10 mA cm) and stability (1000 h at 10 mA cm). Impressively, our catalyst demonstrates notable performance in a PEM electrolyzer with an iridium mass loading of just 0.2 mg cm, achieving a low cell voltage of 1.61 V at 1.0 A cm and maintaining stable operation for over 1000 h. This work presents an effective strategy for fabricating low-noble-metal-loading catalysts with enhanced efficiency for PEM-WE.
使用单原子催化剂是减少质子交换膜水电解(PEM-WE)中铱用量的有效方法。然而,传统方法只能获得表面负载的单原子或团簇,无法满足高电流密度和稳定性的需求。在本研究中,在镧掺杂诱导的离子交换辅助下,我们实现了铱在CoO晶格内的原子级锚定。镧掺杂CoO中晶格锚定的铱表现出更高的原子分散度、更大的平均配位数和更高的氧化态。这种改进激发了氧化物路径机制(OPM),从而提高了活性(在10 mA cm时为236 mV)和稳定性(在10 mA cm时为1000 h)。令人印象深刻的是,我们的催化剂在铱质量负载仅为0.2 mg cm的PEM电解槽中表现出显著性能,在1.0 A cm时实现了1.61 V的低电池电压,并保持稳定运行超过1000 h。这项工作为制备用于PEM-WE的具有更高效率的低贵金属负载催化剂提供了一种有效策略。